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Chapter 1

Introduction

The purpose of this work is to study the postulation of lines in the projective space

of dimension 3. This subject is not new, it has been considered in the 80s by Harshorne

and Hirschowitz in [9]. The authors proved there that general lines (when taken with

the reduced structure) always impose the expected number of conditions on forms of

arbitrary degree in P3. Our aim here is to present a more detailed proof of this claim and

to make the proof available to people with limited command of French.

Postulation problems in geometry have a long and rich history. They have led to

many developments in algebraic geometry and commutative algebra. Some problems,

even if their formulation can be easily understood, are still widely open.

The story begins with the postulation of points in the projective plane P2. Given a

finite number r of general points, it is expected that they impose the expected number

of conditions on forms of any degree d. But what is the expected number of conditions?

It is well known that the space H0(P2,O(d)) of forms of degree d on P2 has (affine)

dimension
(
d+2
2

)
. Vanishing of such a non-zero form in a point imposes one linear condition

on the coefficients of the form. If the number of points r satisfies

r <

(
d+ 2

2

)
,

then we expect that the space of forms vanishing in these points has the dimension(
d+ 2

2

)
− r.

If the number of points is equal or exceeds the dimension of H0(P2,O(d)), then we expect

that there are no such forms apart of the zero form. These expectations are fulfilled by

definition for points in the plane.

However changing the setting just a little bit and allowing points with non-reduced

structure leads to serious complications. Let us illustrate it by a simple example.

Example 1.1. Let P,Q ∈ P2 be two distinct points. Vanishing to order 2 at any of them

imposes 3 conditions (all partial derivatives of order 1 at a point must vanish). Since

the space H0(P2,O(2)) of forms of degree 2 has dimension 6, we expect that no form of
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degree 2 exists, which vanish simultaneously at P and Q to order 2. However, the square

of the linear form vanishing simply at either point, has this property. So in this case

dim(H0(P2,O(2) ⊗ IP ⊗ IQ) = 6 − 5 = 1.

Hartshorne and Hirschowitz instead of increasing the multiplicity of considered points,

increased the dimension of the considered base locus and replaced points by general lines.

Vanishing along lines in P2 is easy to detect, because a form vanishes along a line if

it is divisible by its equation. The problem becomes interesting in higher dimensional

projective spaces. In this work we consider P3.

The first crucial difference between points in P2 and lines in P3 is that the number

of conditions imposed by a line on forms of certain degree d depends on the degree (and

is equal d + 1). As a consequence, the number of conditions imposed by a line does not

always divide the number of forms of fixed degree. For example the space of forms of

degree 5 has affine dimension 56 and the number of conditions imposed by a single line

is 6. Since it is convenient to deal with subschemes imposing as many conditions as the

dimension of the space of forms, we need to introduce some points in addition.

Our approach is based on the well established specialization and degeneration method

exploiting the Castelnuovo Lemma. In order that this approach works we have to deal

with some unreduced subschemes.

It is worth to mention that apart of the paper by Hartshorne and Hirschowitz [9] (in

French) which exploits degenerations to a smooth quadric in P3, there is another work

by Aladpoosh and Catalisano [1], where the authors consider degenerations to the double

plane. A recent preprint by Dumnicki, Malara, Szemberg, Szpond, Tutaj-Gasińska and

the first author [5] takes yet another turn and exploits degenerations to a plane.



Chapter 2

Background and Preliminaries

In this chapter we collect initial data which is used in the sequel and is not explained

in the standard courses in the mathematics study. We work over the field of complex

numbers C.

Let us begin with the ambient space, where our considerations take place, i.e., with

the complex projective space.

Definition 2.1. A complex projective space P3 is defined as the set of equivalence classes

of the points in C4 − {(0, . . . , 0)} under the equivalence relation

(x0, . . . , x3) ∼ (λx0, . . . , λx3), λ ∈ C− {0}.

Definition 2.2. Let G be an additively written commutative monoid. By a G-graded

ring, we mean a ring R, that as an additive group can be expressed as a direct sum.

R =
⊕
d∈G

Rd.

The elements of Rd are called homogeneous elements of degree d.

Definition 2.3. An ideal I of a graded ring R is homogeneous, if I is generated by

homogeneous elements.

Definition 2.4. Let k[x0, . . . , xn] be a ring of homogeneous polynomials, and let I be a

proper ideal. Then, I is prime if fg ∈ I implies f ∈ I or g ∈ I.

Definition 2.5. Let C[x0, . . . , xn] be a ring of homogeneous polynomials. The projective

algebraic set defined by a homogeneous ideal I ⊂ C[x0, . . . , xn] is:

V (I) = {(a0 : . . . : an) ∈ Pn : f(a0, . . . , an) = 0 for all f ∈ I}.

The ideal of projective algebraic set V, is defined as:

I(V ) = {f ∈ C[x0, . . . , xn] : f(a0, . . . , an) = 0 for all (a0 : . . . : an) ∈ V }.

Note that I(V ) is always a saturated ideal.
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Definition 2.6. For a commutative ring R with unity, the spectrum of R, denoted

Spec(R), is the set of all prime ideals of R.

On Spec(R), we define the Zariski topology. For any ideal I ⊆ R, a closed set V (I)

is given by:

V (I) = {p ∈ Spec(R)|I ⊆ p}

Next, we define the structure sheaf OSpec(R) on Spec(R).

Definition 2.7. For any open set U ⊆ Spec(R),OSpec(R)(U) cosists of functions ρ : U −→⋃
p∈U Rp such that:

• s(p) ∈ Rp for every p ∈ U.

• For every p ∈ U, there exist an open neighborhood V ⊆ U of p and elements

g, f ∈ R such that f /∈ q for all q ∈ V, and s(q) = g
f

in Rq for all q ∈ V.

The pair (Spec(R),OSpec(R)) is called an affine scheme.

Definition 2.8. A scheme is a locally ringed space (X,OX) in which every point has

an open neighborhood U such that the topological space U , together with the restricted

sheaf OX

∣∣
U

, is an affine scheme. We call X the underlying topological space of the scheme

(X,OX), and OX its structure sheaf.

Theorem 2.9. A projective algebraic set V is irreducible if and only if I(V ) is a prime

ideal.

Now we recall one of the fundamental results in algebraic geometry which is Bézout’s

Theorem.

Theorem 2.10. If F and G are curves in P2, which are defined by homogeneous polyno-

mials, of degree d1, d2, respectively, and do not have any common components, then the

sum of the intersection multiplicities at all their intersection points is equal to d1d2:∑
P∈F∩G

I(P, F ∩G) = d1d2.

where I(P, F ∩G) denotes the intersection multiplicity of F and G at the point P.

Example 2.11. Let F be curve of degree 3 and G a curve of degree 2 in P2, then the

total number of intersection points (counted with multiplicities) is 3 · 2 = 6

A powerful generalization of Bézout’s Theorem concerns the intersection of algebraic

sets with hypersurfaces.

Let V ⊂ Pn be a projective algebraic set of dimension δ and degree d1 defined by

a homogeneous ideal I ⊂ C[x0, . . . , xn], and let H ⊂ Pn be a hypersurface defined by

a homogeneous polynomial of degree d2, such that H does not contain any irreducible

component of V. Then the intersection V ∩H is a subscheme of dimension δ− 1, and its

degree satisfies:

deg(V ∩H) = deg(V ) · deg(H) = d1 · d2.

This version of Bézout’s Theorem is an important computational tool in the intersection

theory.
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2.1 Conditions in Pn imposed by vanishing along lines

Theorem 2.12. A single line L imposes d+ 1 conditions on the forms of degree d in P3.

Proof. All lines in P3 are projectively equivalent. Since number of imposed conditions

is invariant under linear change of coordinates, it suffices to prove the theorem for a

conveniently chosen line L.

Let L = {(x : y : z : w) ∈ P3 : x = y = 0}. We first show the claim for small values

of d. Let us begin with forms of degree d = 1.

In order to parametrize L, we choose two distinct points P = (0 : 0 : 1 : 0), P ′ = (0 :

0 : 0 : 1) on L. Then

ψ : P1 → L, (λ, µ) 7→ λP + µP ′ = (0 : 0 : λ : µ)

parametrizes L. Using this parametrization, we claim that L is contained in a form of

degree 1 defined by the equation Ax+By+Cz+Dw = 0 if and only if for all (λ : µ) ∈ P1

A · 0 +B · 0 + C · λ+D · µ = 0.

This is equivalent to

λC + µD = 0

All coefficients of a zero polynomial are equal to zero, thus it must be{
C = 0

D = 0
.

The codimension of the subspace of all forms of degree 1 vanishing on L is equal to 2, this

follows from the above linear system of equations with rank 2 coefficient matrix (simply,

those equations are linearly independent). By the definition, this is equivalent to the fact,

that L imposes 2 conditions on forms of degree 1, which proves the statement for degree

1 and an arbitrary line.

The proof for the forms of degree d = 2 is done by the same strategy. The line L,

points P, P ′ and the parametrization remain unchanged. The only difference is that now

we consider a quadric Q defined by the equation

Ax2 +By2 + Cz2 +Dw2 + Exy + Fxz +Gxw +Hyz + Iyw + Jzw = 0.

For a line L we have inclusion L ⊂ Q if and only if for all (λ : µ) ∈ P1

A · 02 +B · 02 +C ·λ2 +D ·µ2 +E · 0 +F · 0 ·λ+G · 0 ·µ +H · 0 ·λ+ I · 0 ·µ+J ·λ ·µ = 0

which gives

λ2C + µ2D + λµJ = 0

this implies 
C = 0

D = 0

J = 0

.



8

The rank of coefficient matrix of above system of linear equation is equal to 3, therefore

the codimension of the subspace of the forms of degree 2 vanishing on L in the space of

all forms of degree 2 is equal to 3, which is equivalent to the fact, that every line in P3

implies 3 conditions on forms of degree 2.

Now we consider the general case of forms of degree d. The line L, points P, P ′ and

line parametrization remain unchanged. Let F be a form of degree d. Every such a form

is defined by equation:

F (x, y, z, w) =
∑

i+j+k+l=d

cijklx
iyjzkwl.

Notice that the number of monomials of degree d in P3 is equal to
(
3+d
d

)
. The form F

vanishes along the line L if and only if for all (λ : µ) ∈ P1

F (0, 0, λ, µ) =
∑

i+j+k+l=d

cijkl · 0i · 0j · λk · µl = 0.

Notice that the only non-zero components are those where i = j = 0. There are
(
1+d
d

)
=

d+1 such components. Therefore the system of linear equation is given by d+1 equations.

Every equation has the form

c00jk = 0.

The coefficient matrix has clearly the maximal rank equal to d+ 1, since every equation

refers to a different variable. This is equivalent to the fact, that the line L imposes d+ 1

conditions on forms of degree d.

The Theorem 2.12 can be easily generalized for projective spaces of any dimension.

Theorem 2.13. A single line L imposes d+ 1 conditions on the forms of degree d in Pn

for any n ⩾ 1.

Proof. The proof can be done using similar methods to the previous Theorem 2.12. We

start with stating the fact, that every line in Pn is equivalent up to the projective change of

variables, which does not affect the number of implied conditions on any forms. Therefore

it suffices to prove the statement for a conveniently chosen line L.

Let L = {(x0 : x1 : . . . : xn) ∈ Pn : x0 = x1 = . . . = xn−2 = 0}. In order to parametrize

L we choose two distinct points P = (0 : . . . : 0 : 1 : 0), P ′ = (0 : . . . : 0 : 0 : 1) on L.

Then

ψ : P1 → L, (λ, µ) 7→ λP + µP ′ = (0 : . . . : 0 : λ : µ)

parametrizes L. Consider general form of degree d given by an equation:

F (x0, . . . , xn) =
∑

i0+...+in=d

ci0...in · xi00 · . . . · xinn = 0.

L ⊂ F if and only if for all (λ : µ) ∈ P1

F (0, . . . , 0, λ, µ) =
∑

i0+...+in=d

ci0...in · 0i0 · . . . · 0in−2 · λin−1 · µin = 0
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Notice that, all nonzero components of above sum have i0 = . . . = in−2 = 0. These

components therefore fulfill the equation in−1 + in = d. There are
(
1+d
d

)
= d + 1 such

components. Every one of them gives an equation

c0...0in−1in = 0

Every equation is linearly independent, therefore the codimension of a subspace of all

forms of degree d vanishing on line L is equal to d+ 1, which proves the Theorem.

The result above leads to a question about points on a line. In particular, we can ask

whether a finite set of collinear points imposes independent conditions on homogeneous

forms of a given degree. The following lemma addresses this question in the case of P3.

Lemma 2.14. Let p1, . . . , pq be collinear points in P3. If q ⩽ k + 1, then these points

impose independent conditions on forms of degree k.

Proof. For any q ⩽ k + 1, we can construct a hypersurface of degree k vanishing at any

chosen subset of k of the points, but not at the remaining one. Indeed, for each point

pi, we can choose a hyperplane containing only pi among the selected points. Taking the

union of such hyperplanes gives a hypersurface of degree k that vanishes at exactly k

chosen points. Therefore, the conditions imposed by the points are linearly independent.

If q > k + 1, then every form od degree k that vanishes at k + 1 collinear points, must

also vanish on the entire line, and hence at all q points. In this case, the conditions are

dependent, and the number of independent ones is bounded above by k + 1.





Chapter 3

The multiprojective space P1 × P1

and its relation to quadrics in P3.

In this chapter we relate via the Segre map the product P1×P1 and a smooth quadric

in P3.

3.1 Introductory remarks on multiprojective spaces

Definition 3.1. The Segre embedding of Pn × Pm is the map

S : Pn × Pm → P(n+1)(m+1)−1

defined pointwise as follows:

S((x0 : x1 : . . . : xn), (y0 : y1 : . . . : ym)) = (x0y0 : x0y1 : . . . : xnym).

In the most basic case, namely when n = m = 1 this gives an embedding of the

product of the projective line with itself into P3. The image of this embedding is a

smooth quadric surface, which clearly contains two one-parameter families of lines. Over

the complex numbers, any smooth quadric is ruled in two distinct ways by lines, so that

any smooth quadric in P3 can be parametrized by the Segre map.

From now on let S : P1 × P1 → P3 denote the map given by

S((u : v), (s, t)) = (us : ut : vs : vt). (3.1)

Definition 3.2. Let F (x, y) be a polynomial in (x0, x1, . . . , xm) and (y0, y1, . . . , yn). We

say that F (x, y) is bihomogeneous of bi-degree (a, b) if it is homogeneous of degree a in

the variables (x0, x1, . . . , xm) and of degree b in the variables (y0, y1, . . . , yn).

Example 3.3. The polynomial

F (s : t, u : v) = su2 + vut− v2t

is bihomogeneous of bi-degree (1, 2). Note that the zero locus of a bihomogeneous poly-

nomial is a well-defined subset of the product of projective spaces.
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Lemma 3.4. The dimension of the space of bihomogeneous polynomials of bidegree (a, b)

in Pm × Pn is equal to
(
m+a
a

)(
n+b
b

)
.

Proof. Let’s take a bihomogeneous polynomial of degree (a, b) in variables x = (x0, . . . , xm)

and y = (y0, . . . , yn). The dimension of the space of bihomogeneous polynomials of bide-

gree (a, b) corresponds to the number of different monomials of this degree. The number

of different monomials of degree a in x = (x0, . . . , xm) is given by
(
m+a
a

)
. Similarly, the

number of different monomials of degree b in y = (y1, . . . , yn) is given by
(
n+b
b

)
. Since

each x-monomial of degree a can be combined with each y-monomial of degree b, the

total number of bihomogeneous monomials of degree (a, b) is the product of :(
m+ a

a

)(
n+ b

b

)
For m = 1 and n = 1 the binomial coefficients simplify to:(

1 + a

a

)(
1 + b

b

)
= (a+ 1)(b+ 1).

We define P1 × P1 as the product of two projective lines. Therefore, we write:

P1 = A1 ∪ {(0 : 1)}.

Every point in the first copy of P1 corresponds to a vertical line in P1 × P1, while every

point in the second copy gives rise to horizontal line. In particular, the point at infinity

(0 : 1) in the first factor correspond to the vertical line:

L1 = {(0 : 1)} × P1,

and the point at infinity (0 : 1) in the second factor gives the horizontal line:

L2 = P1 × {(0 : 1)}.

These two lines, L1 and L2, play the fundamental role in P1×P1: any curve on the surface

can be expressed as a linear combination of them.

In the multiprojective space P1 × P1, we can formulate a version of Bézout’s theorem

analogous to the classical one in P2.

Theorem 3.5. Let C and D be two curves in P1 × P1 without common components.

Suppose that C has bidegree (a1, b1) and D has bidegree (a2, b2). Then the number of

points in the intersection C ∩D, counted with multiplicities, is given by

C · D =
∑

P∈C∩D

(C ·D)P = a1b2 + b1a2.

Where, (C ·D)P denotes the local intersection multiplicity at the point P.
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3.2 The Segre map and the isomorphism of P1 × P1 with smooth quadrics in

P3

Now we will show that P1 × P1 is isomorphic to a smooth quadric in P3. We endow

the first factor in the product P1×P1 with coordinates (u : v) and the second factor with

(s : t).

Consider the following morphism (the Segre map):

S : P1 × P1 ∋ ((u : v), (s : t)) → (us : ut : vs : vt) ∈ P3.

Let (x0 : x1 : x2 : x3) be coordinates on P3. In these coordinates the image of S satisfies

the following equation:

x0x3 − x1x2 = 0, (3.2)

which defines a smooth quadric Q in P3.

In the other direction, let P = (p0 : p1 : p2 : p3) be a point in Q, i.e., p0p3 = p1p2.

For p1 ̸= 0 we define the map F1 : (p0 : p1 : p2 : p3) → ((p1 : p3), (p0 : p1)). Using

(3.1), we obtain

S((p1 : p3), (p0 : p1)) = (p0p1 : p21 : p0p3 : p1p3).

Since, p0p3 = p1p2 we have the following equality:

(p0p1 : p21 : p0p3 : p1p3) = (p0p1 : p21 : p1p2 : p1p3).

Dividing each coordinate by p1, we get

(p0p1 : p21 : p0p3 : p1p3) = (p0 : p1 : p2 : p3),

which means that F1 inverses S on U1 = {(p1 : p2 : p3 : p4) : p1 ̸= 0} ⊂ Q.

For p2 ̸= 0 we define the map F2 : (p0 : p1 : p2 : p3) → ((p0 : p2), (p2 : p3)). Similarly

to the previous case, we have

(p0p2 : p0p3 : p22 : p2p3) = (p0p2 : p1p2 : p22 : p2p3).

Dividing each coordinate by p2, we obtain

(p0p2 : p1p2 : p22 : p2p3) = (p0 : p1 : p2 : p3),

which means that F2 inverses S on U2 = {(p1 : p2 : p3 : p4) : p2 ̸= 0} ⊂ Q.

The cases for nonzero p3 and p4, are analogous.

In the final step we need to show that the maps F1, F2, F3 and F4 agree on the

intersection of their domains, providing a global morphism inverting Q. For example for

P = (p0 : p1 : p2 : p3) ∈ U1 ∩ U2

we have

F1(P ) = ((p1 : p3), (p0 : p1)) ∈ P1 × P1



14

and

F2(P ) = ((p0 : p2), (p2 : p3)) ∈ P1 × P1.

We claim that

((p1 : p3), (p0 : p1)) = ((p0 : p2), (p2 : p3)).

It suffices to check that

(p1 : p3) = (p0 : p2) and (p0 : p1) = (p2 : p3).

Since P ∈ Q it must be p0p3 = p1p2 and the claim follows as

det

(
p0 p2
p1 p3

)
= det

(
p2 p3
p0 p1

)
= 0.

As we saw above the projective surface P1×P1 can be embedded in P3 as x0x3−x1x2 =

0. Restricting to the affine chart where x0 ̸= 0, this surface is given by the equation

x3 = x1x2 in A3. Over R, this surface is double ruled, meaning that it is covered by a

family of disjoin lines in two distinct ways.

Figure 3.1: Surface given by the equation x3 = x1x2 in R3. Source: [3]

The affine picture extends to the projective setting, namely the projective surface

P1 × P1 itself is double ruled in P3, as is contains two families of lines corresponding to

the sets of form {(a1 : a2)} × P1 and P1 × {(b1 : b2)}.
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P1(u : v)

P1(s : t)

{(a1 : a2)} × P1

P1 × {(b1 : b2)}

3.3 Preimage under the Segre map of curves on a smooth quadric in P3

In the proof of the main Theorem 4.1, we will strongly use the isomorphism between

smooth quadric on P3 and P1 × P1 given by Segre morphism. However, to complete our

proofs, we need to understand how we can view curves embedded in quadrics in P3 as

curves in P1 × P1.

From now on, every curve or a point on P1 × P1 we denote using Fraktur letters e.g.

C,L, p to differentiate them from the curves and points on P3 denoted by the same letters

in the standard font.

Consider a smooth quadric Q ⊂ P3 given by the equation x0x3 − x1x2 = 0 and an

irreducible surface F ⊂ P3 given by the equation f = 0 for some homogeneous polynomial

f of degree d in variables x0, x1, x2, x3. If Q ̸⊂ F , then from Bézout’s Theorem 2.10 we

know that C = F ∩Q (the intersection taken scheme theoretic) is a subscheme of degree

2d embedded in Q.

Theorem 3.6. Let Q,F be defined as above. Let S : P1 × P1 → Q denote the Segre

isomorphism defined earlier. Then C = S−1(F ∩ Q) is a curve of bidegree (d, d) in

P1 × P1.

Proof. Consider the point ((u0 : v0), (s0 : v0) ∈ S−1(F ∩ Q). From the definition of

preimage we derive

∃(x0 : x1 : x2 : x3) ∈ F ∩Q : S((u0 : v0), (s0 : t0)) = (x0 : x1 : x2 : x3).

Notice that S((u0 : v0), (s0 : t0)) = (u0s0 : u0t0 : v0s0 : v0t0) and therefore S((u0 : v0), (s0 :

t0)) ∈ Q is satisfied regardless of u0, v0, s0, t0. It remains to show the condition under

which (u0s0 : u0t0 : v0s0 : v0t0) ∈ F . Naturally, the point lies in a surface if and only if it

satisfies it’s equation. Thus we have

((u0 : v0), (s0 : t0)) ∈ S−1(F ∩Q) ⇔ f(u0s0 : u0t0 : v0s0 : v0t0) = 0.
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Since f(x0 : x1 : x2 : x3) was a polynomial of degree d it is easy to see that f(u0s0 :

u0t0 : v0s0 : v0t0) is a bihomogeneous polynomial of bidegree (d, d) and it defines a curve

of such bidegree in P1 × P1.

Notice that Theorem 3.6 does not give us the information on the Segre morphism

preimage of a line embedded in a quadric in P3, since a single line (with reduced structure)

cannot be obtained as the intersection of some surface F with the smooth quadric Q.

However, notice that if we take a point P ∈ Q, then the intersection of the plane H

tangent to Q in point P with quadric Q will be a curve of degree 2 degenerated to two

lines intersecting exactly in the point P . This construction will be useful in the proof of

the statement that the preimage of the Segre morphism of a line contained in Q is, in

fact, a line in P1 × P1. But first we need to prove the following lemma.

Lemma 3.7. Let L ⊂ P1 × P1 be a line, Q the smooth quadric defined earlier, and

S : P1 × P1 → Q the Segre isomorphism defined earlier. Then S(L) is a line in P3

contained in Q.

Proof. Since L is a line in P1×P1, it is given by the zeros of a bihomogeneous polynomial

g of bidegree (1, 0) or bidegree (0, 1). Without loss of generality, we may assume that g

is of bidegree (1, 0). Thus, we can write g((u : v), (s : t)) = au+ bv for some a, b ∈ C not

vanishing simultaneously. From this formula, we obtain the parametrization of L given

by L = { ((b : −a), (s : t)) | (s : t) ∈ P1}.

Hence

S(L) = {(bs : bt : −as : −at) | (s : t) ∈ P1}.

From this parametrization we can read of generators of the ideal of S(L):{
ax0 + bx2
ax1 + bx3

.

Thus, S(L) is a line in P3 lying on a quadric Q.

This gives us the tools required to prove the following important statement.

Theorem 3.8. Let L be a line in P3 contained in Q, which is a quadric defined earlier.

Let S denote the Segre isomorphism defined earlier. Then S−1(L) is a line in P1 × P1.

Proof. Let g = x0x3 − x1x2 be the equation of Q.

We begin by choosing any point p ∈ L. Since L ⊂ Q ∼= P1 × P1, the point p can be

expressed as the image p = S((u0 : v0), (s0 : t0)) = (u0s0 : u0t0 : v0s0 : v0t0) for some

((u0 : v0), (s0 : t0)) ∈ P1 × P1.

Let H be a plane tangent to Q at the point p. We know that H is given by the

equation f = 0, where f =
∑3

i=0

∂g

∂xi
pxi. By calculating the partial derivative, we obtain

f = v0t0x0 − v0s0x1 − u0t0x2 + u0s0x3. The crucial observation mentioned earlier is that

H ∩Q = L∪L′ where L′ is another line contained in Q that intersects with L exactly at

p. Now consider the point p = ((u : v), (s : t)) ∈ P1×P1 such that p ∈ S−1(H ∩Q). From
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the proof of Theorem 3.6, we know that p ∈ S−1(H ∩ Q) ⇔ f(S(p)) = 0. Substituting,

we obtain

0 = f(S(p)) = v0t0us− v0s0ut− u0t0vs+ u0s0vt = (u0v − v0s)(s0t− t0s).

Therefore, S−1(H ∩ Q) = L1 ∪ L2, where L1,L2 are lines in P1 × P1 given by equations

u0v − v0s = 0 and s0t− t0s = 0 respectively. We have

L1 ⊂ S−1(H ∩Q) ⇒ S(L1) ⊂ S(S−1(H ∩Q)) = H ∩Q = L ∪ L′.

By Lemma 3.7 we know that S(L1) is a line in P3 therefore it must be either L or L′.

Without loss of generality, we may assume that S(L1) = L. From this it is easy to see

that S(L2) = L′. From the fact that S is injective, we know that S−1(L) = L1, therefore,

it ends the proof.

By Lemma 3.7 and Theorems 3.6 and 3.8 we get a good understanding of how curves

contained in the quadrics in P3 correspond to curves on P1×P1. We conclude this section

with somewhat obvious corollaries. As P1×P1 there are two families of lines on a smooth

quadric on P3, they are called rulings. Lines of the same family do not intersect, and any

two lines of distinct rulings intersect at exactly one point in Q. If we take the inverse of

Segre embedding, the lines of the same ruling in P3 lie on the same ruling in P1 ×P1 and

the lines of distinct rulings in P3 correspond to the lines of distinct rulings in P1 × P1.

3.4 Independent conditions imposed by points in P1 × P1.

In order to prove the main Theorem 4.1, we need to understand conditions imposed

by points in P1 × P1 on forms of all bidegree. We address this problem in this section.

Since it is fully dedicated to P1 × P1, we omit using Fraktur letters, and convey to the

standard notation.

Let us introduce some additional notation used throughout this section. Let X be

any set. By F((a, b), X) we denote the space of all forms of bidegree (a, b) vanishing

on X. In this notation F((a, b), ∅) is just the space of all forms of bidegree (a, b). For

any set X we view F((a, b), X) as a linear subspace of F((a, b), ∅) and we denote that by

F((a, b), X) ⩽ F((a, b), ∅).

Theorem 3.9. Let X be the set of k points in general position in P1 × P1. Then

codimF((a, b), X) = max{k, (a+ 1)(b+ 1)}.

We omit the proof of this theorem. It just states that k points in general position im-

pose k independent conditions on forms of bidegree (a, b). This is the expected behavior,

similar to that of general points in Pn.

Much less intuitive is what we state next. If we take k collinear points in P1 × P1,

then on the forms of sufficiently high bidegree they impose independent conditions. This

fact is commonly used throughout the proof of the main theorem. To tackle the proof of

this, we start with a lemma.
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Lemma 3.10. Let Z be the set of k + 1 collinear points lying in the vertical ruling of

P1 × P1. Then for any l ∈ N, Z imposes independent conditions on the forms of bidegree

(l, k), that is, codimF((l, k), Z) = k + 1.

Proof. codimF((l, k), Z) = dimF((l, k)∅) − dimF((l, k)Z). By 3.4, dimF((l, k)∅) = (l +

1)(k + 1). The fact that the points of Z lie in a vertical ruling means that there exists

a vertical line, that is, a form of bidegree (1, 0), passing through all the points of Z. If

the form of bidegree (l, k) vanishes on Z it must contain this line. Thus, we are left with

any form of bidegree (l− 1, k). Therefore, dimF((l, k)Z) = dimF((l− 1, k)∅) = l(k+ 1).

Thus, codimF((l, k), Z) = (l + 1)(k + 1) − l(k + 1) = k + 1, which ends the proof.

Now, if a set imposes independent conditions on the forms of some bidegree, we expect

it to impose independent conditions on all the forms of ”higher” bidegree. We formalize

this statement in the following theorem.

Theorem 3.11. Let Z be the set of k + 1 collinear points lying in the vertical ruling of

P1 × P1. Then for any l, u ∈ N the set Z imposes independent conditions on forms of

bidegree (l, k + u), that is, codimF((l, k + u), Z) = k + 1.

Proof. Let W = Z + pk+2 + . . . + pk+u+1 be the union of Z with u additional points on

the same vertical line that containing Z. Thus, W is the set of k + u collinear points

lying on a vertical line.

Directly from Lemma 3.10 we know that codimF((l, k + u),W ) = k + u + 1. Now

notice that since Z ⊂ W we have

F((l, k + u),W ) ⩽ F((l, k + u), Z) ⩽ F((l, k + u), ∅)

that is, we can view F((l, k + u),W ) not only as a linear subspace of F((l, k + u), ∅) but

also as a linear subspace of F((l, k+ u), Z). The last observation is that the codimension

of F((l, k+u),W ) viewed as a subspace of F((l, k+u), Z) is at most u, since |W \Z| = u,

and similarly codimension of F((l, k+u), Z) viewed as a subspace of all forms of bidegree

(a, b) is at most k+1, since Z consists of k+1 points. To acknowledge that it is sufficient

to state that codimF((l, k + u), Z) = k + 1, see Figure 3.2.

F((l, k + u),W ) F((l, k + u), Z) F((l, k + u), ∅)
codim⩽u

codim=u+k+1

codim⩽k+1

Figure 3.2: A diagram of codimension relations between spaces.

Lemma 3.10 and Theorem 3.11 can naturally be restated and proved for the points

in the horizontal ruling. We omit that.
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We end this section with the theorem on the independent conditions imposed by

configurations of points and double points on P1 × P1. It is well known that on P2 a

double point (point with multiplicity two) imposes 3 conditions. The same holds for

P1×P1. However, it is less obvious that if we take, e.g., four points with multiplicity one

and two double points, they induce the expected number, i.e., 4 · 1 + 2 · 3 = 10 conditions

on the forms of bidegree (1, 4). To manage such situations, we introduce the following

theorem, which is a direct corollary of [12, Theorem 2.2].

Theorem 3.12. The configuration of 3k2 − k + 2 general points with multiplicity one

and 2k general points with multiplicity two imposes independent conditions on a form of

bidegree (k, 3k + 1).





Chapter 4

The main theorem

In this chapter we state our main result.

Theorem 4.1 (Main theorem). Let Y ⊂ P3 be a set of r lines L1, . . . , Lr in general

position, Y = L1 + . . .+ Lr. Then Y imposes

min

(
r(d+ 1),

(
3 + d

3

))
independent conditions on forms of degree d, i.e., the space of forms of degree d vanishing

on Y is either zero, or its codimension in the space of all forms of degree d is equal to

r(d+ 1).

An equivalent statement is that the linear transformation (the restriction map)

ϕ : H0(P3,OP3(d)) → H0(Y,OY (d))

derived from the structure sequence

0 → IY → OP3 → OY → 0

twisted by d

0 → IY (d) → OP3(d) → OY (d) → 0

has always the maximal rank.

Example 4.2. For d = 3 the dimension of the space of forms of degree 3 in P3 is equal

to
(
3+3
3

)
= 20. We expect for Y = L1 that dim kerϕ = 20 − (3 + 1)1 = 16 (so the

codimension is equal to 4). For Y = L1 +L2 the expected dim kerϕ = 20− (3 + 1)2 = 12

and so on. That means that for Y = L1 + . . .+ L5 the dimension dim kerϕ equals 0, i.e.

the kernel is trivial, so the only form of degree 3 vanishing on 5 general lines is the zero

polynomial. The maximal rank statement can be understood by the fact that for r < 5

ϕ is expected to be surjective, for r = 5 bijective and for all r > 5 injective.

This example leads to the following generalization. If r0 =

(
3+d
d

)
d+ 1

is an integer, then

for Y = L1 + . . . + Lr0 the map ϕ in Theorem 4.1 is expected to be bijective. Once

21
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proved, this claim implies the Main Theorem for any number r of lines. Indeed, the

restriction map must be injective (having the trivial kernel) for all r > r0. For r < r0, let

Yr = L1 + . . .+ Lr and Yr0 = Yr + Lr0+1 + . . .+ Lr0 . We have Yr ⊂ Yr0 and

H0(Yr,OYr(d)) = ⊕r
i=1H

0(Li,OYi
(d)) ⊂ ⊕r0

i=1H
0(Li,OYi

(d)) = H0(Yr0 ,OYr0
(d)).

Hence there is a natural projection on a subspace

π : H0(Yr0 ,OYr0
(d)) → H0(Yr,OYr(d))

and ϕr = ϕr0 ◦ π is a surjection.

The number r0 is an integer provided that d is sufficiently divisible. Additional diffi-

culties emerge when this condition is not satisfied.

Example 4.3. Consider d = 5. Let P3 ⊃ Y = L1 + · · ·L9 be 9 lines in general position

and similarly P3 ⊃ Y ′ = L′
1 + . . .+ L′

10 be 10 lines in general position.

By Lemma 3.4 the dimension of the space of forms of degree 5 in P3 is equal to(
3+5
5

)
= 56. Every line imposes 6 conditions on forms of degree 5. Since Y consists of 9

lines, We expect it to impose 9 · 6 = 54 conditions, so the dimension of space of forms of

degree 5 vanishing on Y is expected to be 56 − 54 = 2 and we expect ϕ to be surjective.

For Y ′ the number of expected imposed conditions is 60 > 56, which means that the

kernel of ϕ is trivial, but ϕ is not a bijection, it is only an injection.

The problem is that for d = 5 proving that for 9 general lines ϕ is surjective and for

10 general lines ϕ is injective is not sufficient to prove the Theorem. It can be understood

by the fact that although the surjectivity of ϕ for 9 general lines proves the fact that 9

general lines have good postulation, for 10 general lines ϕ can be injective even if the 10-

th general lines implies less independent conditions (e.g. only 3 independent conditions

instead of 6).

4.1 Reduction of the statement of Theorem 4.1.

Since a single line L imposes k + 1 conditions on forms of degree k in P3, an upper

bound for r general lines is given by codim kerϕ ⩽ r(k+ 1). Otherwise, this would imply

that some line imposes more than k + 1 conditions on forms of degree k.

Let us assume that N ∋ r =

(
3+k
k

)
k + 1

. If such r exists, then ϕ for Y = L1 + . . . + Lr

is expected to be bijective as explained in Example 4.2. Since we have upper bounding

for the codimension, we know that ϕ is injective, therefore proving that it is also a

surjection is enough to prove the theorem, because it proves the surjection for r′ < r and

it guarantees trivial kernel (injection) for r′ > r.

Corollary 4.4. Let k ⩾ 0, be any set integers. If there exists a natural number r such

as r =

(
3+k
k

)
k + 1

, To prove Theorem 4.1 for set k it suffices to prove that for Y consisting of

r lines in the general position, i.e. Y = L1 + · · ·Lr the only form of degree k vanishing

on Y is a zero polynomial.
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More generally, we can define r =

⌊(
3+k
k

)
k + 1

⌋
and q as the remainder: q =

(
3+k
k

)
− r(k+

1). If the remainder q ̸= 0, it means that there exists no r such as ϕ is bijection.

Proposition 4.5. Let k ⩾ 0, be any set integers. We define r, q as before: r = ⌊
(
3+k
k

)
k + 1

⌋

and q =
(
3+k
k

)
−r(k+1). Let Y be the set of r lines in the general position and q collinear

points, i.e. Y = L1 + · · ·Lr +P1 + · · ·Pq. It suffices to prove that ϕ for such Y has trivial

kernel to prove Theorem 4.1 for the set k.

Proof. It is a generalization of Corollary 4.4, when q ̸= 0. To conclude this, we use Lemma

2.14 which states that q ⩽ k + 1 collinear points on P3, impose q independent conditions

on the form of degree k. Using the upper bounding of dimker(ϕ) and the mentioned

lemma, we can see that the trivial kernel of ϕ for such Y proves that it is bijective and

therefore proves that for every r′ < r lines in general position, the codimension is expected

and since the q points P1, · · · , Pq are collinear, if we add a new line in general position

but passing through P1, · · · , Pq, the kernel must remain trivial.

Remark 4.6. The triviality of the kernel mentioned in Proposition 4.5 means that the

dimension of the space of forms of degree d vanishing in r general lines and q collinear

points is zero. Since the dimension function is upper semi-continuous, it suffices to prove

the statement for a particular configuration of lines and points.





Chapter 5

Proof of the Main Theorem

In order to alleviate notation, the statement of Theorem 4.1 for a fixed d ⩾ 0 will be

denoted by Hd. Using Proposition 4.5, we will prove Theorem 4.1 for any d by induction.

First, we need to deal with the initial cases for d ∈ {0, . . . , 8}.

5.1 Initial cases

Case H0, r = 1, q = 0. We have to show that the non-trivial form of degree zero does

not vanish on a general line. For example, for a line L given by equations{
x = 0

y + z = 0

such form of degree 0 does not exist which proves the statement.

Case H1, r = 2, q = 0. Two general lines in P3 are skew, so they are not contained in

any plane.

Case H2 r = 3, q = 1. We want to prove that there exists no quadric containing three

general lines and one general point. We start by showing that there exists exactly

one quadric containing three general lines.

We know that there exists at least one quadric containing three general lines because

three lines may impose at most 3 · (2 + 1) = 9 conditions on the quadric and the

dimension of all forms of degree 2 in P3 is equal to
(
3+2
3

)
= 10 > 9. By the

semicontinuity of dimensions of cohomology spaces, it suffices to construct three

lines such that the dimension of a space of quadrics containing those three lines is

equal to 1.

Consider the lines L1, L2, L3 given by equations{
x = 0

z = 0
,

{
y = 0

w = 0
,

{
x = −y
z = −w

25
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respectively. It is easy to see that they can be parametrized in the the following

way:

L1 = {(0 : u : 0 : v) | (u : v) ∈ P1}
L2 = {(u : 0 : v : 0) | (u : v) ∈ P1}
L3 = {(−u : u : −v : v) | (u : v) ∈ P1}

Now consider the quadric Q given by an equation

Ax2 +By2 + Cz2 +Dw2 + Exy + Fxz +Gxw +Hyz + Iyw + Jzw = 0

Due to the fact that Q contains L1 the equation of Q must be satisfied for every

point from L1 in particular the points (0 : 1 : 0 : 0), (0 : 0 : 0 : 1), (0 : 1 : 0 : 1).

Substituting these points into the equation of Q we obtain the following system of

linear equations 
D = 0

B = 0

D +B + I = 0

.

Similarly taking advantage of the fact that Q contains L2 and considering points

(1 : 0 : 0 : 0), (0 : 0 : 1 : 0), (1 : 0 : 1 : 0) ∈ L2, we obtain the system of equations
A = 0

C = 0

A+ C + F = 0

.

From those 6 equations combined we know that A = B = C = D = F = I = 0.

Using that and considering points (−1 : 1 : 0 : 0), (0 : 0 : −1 : 1), (−1 : 1 : −1 : 1) ∈
L3 we obtain the following equations

E = 0

J = 0

E + J +G+H = 0

.

In the end we have A = B = C = D = E = F = I = J = 0 and G = −H which

gives us an equation of quadric Q in a form of

t · xw − t · yz = 0, t ∈ C.

This proves that the dimension of quadrics vanishing on three general lines in P3 is

equal to 1.

Now, since there is only one quadric containing three general lines, we can ensure

that by taking a point outside of the quadric the dimension of quadrics vanishing

on three general lines and general point is equal to zero, meaning that the only such

form is the zero form.
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Case H3 r = 5, q = 0. We would like to prove that the only form of degree 3 vanishing

on five general lines L1, . . . , L5 is the zero form. Working by contradiction, let us

assume that there exists a non-trivial form F of degree 3 vanishing along the lines.

Consider the quadric Q determined by L1, L2, L3. The lines L4, L5 intersect Q

transversally, thus each in two points (see Figure 5.1). There are two cases: Q ⊂ F

or Q ̸⊂ F .

Q

L2L3L1

L4

L5

Figure 5.1: Arrangement of Q and L1, . . . , L5.

1. Consider Q ̸⊂ F . Therefore, from Theorem 2.10 we know that the intersection

F ∩Q is a curve of degree 6. Consider the Segre isomorphism S : P1×P1 −→ Q

and its inverse S−1. By Theorem 3.6 we know that S−1(F ∩ Q) is a curve C

of bidegree (3, 3). Since L1 + . . .+ L5 ⊂ F , therefore C contains the preimage

of restrictions of L1, . . . , L5 to Q. As L1, L2, L3 are in the same ruling (wlog.

vertical ruling) in Q from 3.8 their preimage are three non-intersecting lines

L1,L2,L3 in P1 × P1 each of bidegree (1, 0). The preimage of L4, L5 that

intersects with Q in two general points is simply four general points p1, . . . , p4
in P1 × P1. Since C vanishes on the lines L1,L2,L3, factoring these lines out,

we obtain a form of bidegree (0, 3) (hence 3 lines in the horizontal ruling) that

must contain four general points p1, . . . , p4 , which is a contradiction.

2. Consider Q ⊂ F . Therefore, we can write F = Q + F̃ where F̃ is a form

of degree 3 − 2 = 1. Since L4, L5 are not contained in Q, it is required that

L4 + L5 ⊂ F̃ which contradicts H1.

Case H4 r = 7, q = 0. The goal is to show that for seven general lines, the only form of

degree 4 vanishing on all seven lines is the zero polynomial. We will utilize similar

techniques to the case H3 with small twists. Let denote the lines L1, . . . , L7 and let

L1, L2, L3 be lines in the vertical ruling of a smooth quadric Q.

We specialize L4 and L5 to intersect at a point and moreover we assume that this

point lies on Q. We do the same for the pair L6 and L7. Of course we assume that

the intersection points of each pair are different (see Figure 5.2).

Let us now assume by contradiction that there exists a non-trivial form of degree 4

denoted by F vanishing along all lines L1, . . . , L7. Then again there are two cases:

Q ⊂ F or Q ̸⊂ F .
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Q

L2L3L1

L4

L5

L6

L7

Figure 5.2: Arrangement of Q and L1, . . . , L7.

1 Consider first the case Q ̸⊂ F . Then the restriction F |Q is a curve of degree

2 · 4 = 8. Again considering the Segre isomorphism S : P1 × P1 → Q and

it’s inversion S−1 we know that C = S−1(F |Q) is a bihomogeneous curve of

bidegree (4, 4) vanishing on all traces of L1, . . . , L7 on P1×P1. Since L1, L2, L3

are contained in Q their image in P1×P1 are three lines L1,L2,L3 in the vertical

ruling (they are not intersecting). Therefore bideg(C − (L1 + L2 + L3)) =

(4, 4) − 3 · (1, 0) = (1, 4).

Now the traces of L4, L5, L6, L7 are two double points (points with multiplicity

two coming from intersections of L4, L5 and L6, L7 respectively) and four points

with multiplicity one. Suppose there exist a bihomogeneous polynomial g of

bidegree (1, 4) vanishing at all those points. Consider now a line of bidegree

(0, 1) (a horizontal line) passing through one of the points with multiplicity 2.

We know that g has multiplicity two at this point, thus g has to contain the

whole line because otherwise it would contradict Bézout’s Theorem for P1×P1

3.5, since curves of bidegree (1, 4) and (0, 1) intersect either at exactly 1 point

counted with the multiplicity or the second curve is a component of the first

curve. The same argument can be applied to prove that the polynomial g van-

ishes aling line of bidegree (0, 1) containing the second point with multiplicity

two.

Reducing g by those 2 lines we are left with a polynomial of bidegree (1, 4) −
(0, 1) − (0, 1) = (1, 2) containing 6 general points with multiplicity one. By

Lemma 3.4 we know that the dimension of a space of polynomials of bidegree

(1, 2) is equal to (1 + 1) · (2 + 1) = 6 so the only polynomial of such degree

containing 6 general points is the zero polynomial, which is a contradiction.

2. In the case Q ⊂ F we have F = Q+ F̃ , where F̃ is a form of degree 4− 2 = 2

in P3. Since L4, L5, L6, L7 are not contained by Q they must lie in F̃ . If

L1, . . . , L4 were lines in general position we could say that it is a contradiction

with H2 but remember we actually specialized L4, L5 to intersect and L6, L7

to intersect as well. So the argument does not apply directly.

If the quadric F̃ contains all those lines, we can again use the Segre isomor-

phism to see how traces of those lines look in P1 × P1. We denote images of

L4, . . . , L7 by L4, . . . ,L7 respectively. Since L4 and L5 intersected thus their
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images also do, which means L4,L5 are lines from different ruling on P1 × P1.

Without loss of generality we can write that L4 is of bidegree (1, 0) and L5 is

of bidegree (0, 1). Exactly same logic allows us to write that L6 is of bidegree

(1, 0) and L7 is of bidegree (0, 1). Since every two lines from different rulings

intersect in P1 × P1, this implies that L4 and L7 intersects and L5 intersects

with L6. In the consequence L4 and L7 have to intersect and L5 and L7 have

to intersect which is not true in general, therefore it is a contradiction.

Case H5 r = 9, q = 2. We want to show that there exists no form of degree 5 that

contains nine general lines and two points. Working by contradiction, let us assume

that there exists a non-trivial form F of degree 5 vanishing along the lines L1, . . . , L9

and points P1, P2. We specialize L1, . . . , L4 to lie in the vertical ruling of the smooth

quadric Q and we specialize the points P1, P2 to be contained in the same quadric

Q. Lastly, the lines L5, . . . , L9 are general, so they intersect Q transversally, each

at two points (see Figure 5.3). There are two cases to consider. Either Q ⊂ F or

Q ̸⊂ F.

Q

L4

....
L1

P1

P2

L5

...
...

L9

Figure 5.3: Arrangement of Q, L1, . . . , L9 and P1, P2.

1 Consider the case Q ̸⊂ F . Since L5, . . . L9 intersected Q transversally, the

traces of L5, . . . L9 are ten general points on P1 × P1. Adding two general

points S−1(P1), S
−1(P2) we get twelve general points in P1 × P1. Since by

Lemma 3.4 we know that the dimension of the forms of the bidegree (1, 5) is

2 ∗ 6 = 12, we know that the only form of the bidegree (1, 5) that vanishes in

those twelve points is the zero form; hence, we get a contradiction.

2 Consider the case Q ⊂ F . Then we can write F = Q + F̃ , where F̃ is a form

of degree 5 − 2 = 3 in P3. Since L5, . . . , L9 are not contained in Q, they must

be contained in F̃ . The form of degree 3 vanishing along five general lines is

in contradiction with H3, which ends the proof.

Case H6 r = 12, q = 0. We want to prove that there exists no form of degree 6 vanishing

along twelve general lines. By contradiction, let us assume that there is a form F

of degree 6 containing the lines L1, . . . , L12. We specialize L1, . . . L5 to lie on the

vertical ruling of a smooth quadric Q, and the lines L6, . . . L12 are general, which

means that they intersect Q transversally, each at two distinct points (see Figure

5.4). There are two cases to consider, either Q ⊂ F or Q ̸⊂ F .
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Q

L5

....
L1

L6

...
...

L12

Figure 5.4: Arrangement of Q, and L1, . . . , L12.

1 Consider the case Q ̸⊂ F . Then, from Bézout’s Theorem 2.10 and 3.6 we

know that C = S−1(F |Q), where S denotes the Segre isomorphism, is a curve

of bidegree (6, 6) on P1 × P1. If we denote Li = S−1(Li) for i = 1 . . . , 5, since

L1, . . . , L5 ⊂ Q, we know that L1, . . . ,L5 ⊂ C. Note that from 3.8 Li is a line of

bidegree (1, 0) for i = 1, . . . , 5. Therefore we can write deg(C−(L1+. . .+L5) =

(6, 6) − 5 · (1, 0) = (1, 6). This means that the residue curve of bidegree (1, 6)

must contain all traces of L6, . . . , L12 in P1 × P1. The preimage of L6, . . . , L12

is 14 general points (originating from the intersections of L6, . . . , L12 with Q).

By Lemma 3.4 the dimension of all forms of bidegree (1, 6) is equal to 2·7 = 14,

therefore there exists no non-trivial form of such bidegree containing 14 general

points which results in a contradiction.

2 Consider the case Q ⊂ F . Then, we may write F = Q+ F̃ for F̃ being a form

of degree 6 − 2 = 4. Since L6, . . . , L12 ̸⊂ Q, we know that L1, . . . , L12 ⊂ F̃ .

This is a direct contradiction with H4, which ends the proof.

Case H7 r = 15, q = 0.. We want to show that there exists no form of degree 7 vanishing

along 15 general lines. Working by contradiction, let us assume that there is a form

F is of degree 7 vanishing along general lines L1, . . . L15. We begin by specializing

lines L1, . . . , L5 to the vertical ruling of a smooth quadric Q. Additionally, we

specialize lines L6 and L7 to intersect exactly at a point on Q. We do the same

with three next pairs of lines: L8 with L9, L10 with L11 and L12 with L13. That

way, we end up with five lines fully contained by Q, four pairs of lines intersecting

at a point in Q and two general lines. We have to consider two cases, either Q ⊂ F

or Q ̸⊂ F .

1 Consider first Q ̸⊂ F . Considering the Segre isomorphism S : P1 × P1, by

2.10, we know that the F |Q is a curve of degree 14 and by 3.6 we know that

C = S−1(F |Q) is a curve of bidegree (7, 7) in P1 × P1. Let us denote Li =

S−1(Li) for i = 1, . . . , 5. By 3.8, we know that for i = 1, . . . , 5 the preimage

Li is a line of bidegree (1, 0). Since L1 . . . , L15 ⊂ F , we know that C vanishes

along all preimages of traces of Li. Consider the residue curve obtained by

factoring L1, . . . ,L5 out of C. Since we know that deg(C− (L1 + . . .+ L5)) =

(7, 7) − 5 · (1, 0) = (2, 7), the residue curve is of bidegree (2, 7) and contains
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preimages of all traces of L6, . . . , L15. Consider lines L6, . . . , L13. Those lines

consists of four pairs of lines intersecting exactly at a point in Q. Additionally,

each of those 8 lines intersects Q in one more point. Therefore we have 4

points with multiplicity two and 8 points with multiplicity one. Taking into

account the two last general lines L14, L15 which intersect at 4 more points

with Q we have 4 points with multiplicity two and 8 + 4 = 12 points with

multiplicity one. All those points have to be contained by a form of bidegree

(2, 7). By 3.12 we know that such arrangement of points with multiplicity two

and one imposes independent conditions in P1 × P1, which means that every

double point imposes three conditions on forms of any bidegree, and points

general points with multiplicity one impose one condition each. In total, we

have 3 · 4 + 12 = 24 conditions. Due to the fact, that the dimension of a space

of forms of bidegree (2, 7) by 3.4 is equal to 3 · 8 = 24, we get a contradiction.

2 Consider Q ⊂ F . This case is especially interesting, because proving contra-

diction is not as straightforward as it was in earlier examples. We can write

F = Q+F̃ , where F̃ is a form of degree 7−2 = 5 containing four pairs of inter-

secting lines L6, . . . , L13 and two general lines L14, L15. Now let us additionally

specialize those lines. We choose lines L6, L8, L10, L12, L14 to lie on a vertical

ruling of some smooth quadric Q′. Notice that, we now have specialized one

line from each intersecting pair of lines and one of the remaining general lines.

Consider the Segre isomorphism S acting on Q′. We have two consider now

two cases. Either Q′ ⊂ F̃ or Q ̸⊂ F̃ .

a) Consider the case Q ̸⊂ F̃ . From the Bezout’s theorem 2.10 and Theorem

3.6, we know that S = S−1( F̃
∣∣∣
Q′

) is a curve of bidegree (5, 5). Since

L6, L8, L10, L12, L14 ⊂ Q′ by Theorem 3.8 we know that Li = S−1(Li), i =

6, 8, 10, 12, 14 are lines of bidegree (1, 0). Consider the residue curve ob-

tained by factoring L6,L8,L10,L12,L14 out from the C. We may write

deg(S −
∑7

k=3 L2k) = (5, 5) − 5 · (1, 0) = (0, 5). This curve of bidegree

(0, 5) have two contain all the preimages of traces of L7, L9, L11, L13, L15

on Q′. The L15 is a general line therefore it intersects with Q′ at two

distinct points. Lines L7, L9, L11, L13 also intersects with Q′ in two points,

however one of this points is already contained by Q′, because it comes

from the intersection with paired line L6, L8, L10, L12 respectfully. In the

end we have 2 + 4 · 1 = 6 general points contained by a curve of bidegree

(0, 5). Since the dimension of a space of forms of bidegree (0, 5) is equal

to 6, such form does not exist and it is a contradiction.

b) Consider the case Q′ ⊂ F̃ . Then, we can write F̃ = Q′ +
˜̃
F , where

˜̃
F is

a form of degree 3 containing L7, L9, L11, L13, L15. It is a form of degree 3

containing 5 general lines, which is a direct contradiction with H3.

The case of H7 is clearly different and more complex than previously considered

cases. For H4 the complexity was hidden under small number of lines, which allowed



32

us to use some other tricks. However, in the generalized proof the cases where

d = 3k + 1 remain as complex as H7. To handle them, we will always rely on the

techniques presented in this proof.

Case H8 r = 18, q = 3. We want to show that there exists no form of degree 8 vanishing

in 18 general lines and 3 collinear points. Working by contradiction, let us assume

that the form F vanishes on the lines L1, . . . , L18 and the collinear points P1, P2, P3.

We specialize lines L1, . . . , L6 to lie in a vertical ruling of a smooth quadric Q.

Additionally, we specialize the points P1, P2, P3 not only to be collinear but also to

be contained in the same quadric Q. We have to consider two cases, either Q ⊂ F

or Q ̸⊂ F .

1 Consider Q ̸⊂ F . Considering the Segre isomorphism S : P1 × P1, by 2.10, we

know that F |Q is a curve of degree 16 and by 3.6, we know that C = S−1(F |Q)

is a curve of bidegree (8, 8) on P1×P1. Consider Li = S−1(Li) for i = 1, . . . , 6.

By 3.8, we know that Li is a line on the vertical ruling i.e. a curve of bidegree

(1, 0). Consider the residue curve obtained by factoring L1, . . . ,L6 out of C.

Since we know that deg(C − (L1 + . . . + L6)) = (8, 8) − 6 · (1, 0) = (2, 8),

the residue curve is of bidegree (2, 8) and contains preimages of all traces of

L7, . . . , L18 and traces of P1, P2, P3 left on P1 ×P1. Since each line L7, . . . , L18

intersected with Q at two distinct points, the S−1((L7 ∪ . . . ∪ L18) ∩ Q) are

24 general points in P1 × P1. Since P1, P2, P3 where chosen to lie in Q their

preimages are simply 3 collinear points on P1×P1. The residue curve vanishes

on 24 general points and 3 collinear points. By Theorem 3.11 we know that 3

collinear points on P1×P1 impose independent conditions on forms of bidegree

(2, 8). Thus, in total, we have 27 independent conditions imposed on a residue

curve of bidegree (2.8). Since the dimension of all forms of bidegree (2, 8)

is 27, the only form of such a bidegree satisfying all conditions is the zero

polynomial, and hence it is a contradiction.

2 Consider Q ⊂ F . Then, we can write F = Q+ F̃ , where F̃ is a form of degree

8 − 2 = 6 vanishing along L7, . . . , L18. Since L7, . . . , L18 are general lines, it is

a contradiction with H6.

5.2 Proof by induction for all d ⩾ 9

The eight initial cases of Hd should be enough to grasp a concept of how the general

proof is going to work. We simply consider three distinct cases, based on the reminder

of d modulo 3. For each case, we construct a slightly different arrangement of lines,

proving the theorem. Since the initial cases are already proven, we perform the proof by

induction.

Case d = 3k, k ∈ N⩾2. r = 1
2
(k+ 1)(3k+ 2), q = 0. First, we briefly explain how r was

calculated. In the later cases of proofs, we omit this part. The dimension of all
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forms of degree 3k in P3 is equal to
(
3k+3
3

)
= 1

2
(k + 1)(3k + 2)(3k + 1). Any single

line imposes 3k + 1 independent conditions on forms of degree 3k, therefore, we

consider r =
1
2
(k+1)(3k+2)(3k+1)

3k+1
= 1

2
(k + 1)(3k + 2). It is easy to observe that r is an

integer for all k. We want to prove that there exists no non-trivial form of degree 3k

that contains r general lines. Working by contradiction, we assume that a nonzero

form F of degree 3k vanishes along Y , where Y = L1 + . . . + Lr is the union of r

lines. We specialize Y to be of the form Y = Y ′ +Y ′′, where Y ′ = L1 +L2k+1 is the

set of 2k + 1 lines that lie in the vertical ruling of a smooth quadric Q. Note that

2k + 1 < r, so the construction is always possible. Y ′′ is the set of the remaining s

lines, i.e. s = r− (2k+ 1) = 1
2
(3k2 + 5k+ 2)− (2k+ 1) = 1

2
(3k2 + k) = 1

2
k(3k+ 1).

Each line of Y ′′ intersects with Q at two distinct points transversally.

We now consider two cases, Q ⊂ F or Q ̸⊂ F .

1 Consider the case Q ̸⊂ F . By Bézout’s theorem 2.10 we know that F |Q is

a curve on Q of degree 2 · 3k = 6k. By 3.6, we know that C = S−1(F |Q) is

a form of bidegree (3k, 3k) on P1 × P1, where S : P1 × P1 → Q is the Segre

isomorphism. Let us denote Y′ = S−1(Y ′|Q) and Y′′ = S−1(Y ′′|Q). We can

write Y ⊂ F ⇒ S−1(Y |Q) ⊂ C ⇔ Y′ ∪ Y′′ ⊂ C. Since Y ′ is the union of

2k+ 1 lines in the vertical ruling on Q, we know that Y′ is the union of 2k+ 1

lines in the vertical ruling on P1 × P1. Consider the residue curve R = C−Y.

We know that deg(R) = (3k, 3k) − (2k + 1) · (1, 0) = (k − 1, 3k). Note that

since each line of the s lines of Y ′′ intersected with Q at two points, Y′′ is a

union of the 2 · s = 2 · 1
2
k(3k + 1) = k(3k + 1) points. We know that Y′′ ⊂ R.

Thus, we have a form of bidegree (k − 1, 3k) vanishing in k(3k + 1) points.

Since the dimension of all forms of bidegree (k − 1, 3k) is equal to k(3k + 1),

the only form of such a bidegree vanishing in k(3k + 1) general points is zero

polynomial and that is a contradiction.

2 Consider the case Q ⊂ F . Then we may write F = Q + F̃ , where F̃ is the

form of degree 3k − 2 vanishing along Y ′′. Notice that Hd−2 states that there

exists no non-trivial form of degree 3k − 2 that vanishes along 1
2
k(3k + 1)

general lines1. Since Y ′′ consists exactly of the 1
2
k(3k+1) general lines, we get

a contradiction with Hd−2, ending the proof.

Case d = 3k + 1, k ∈ N⩾2. r = 1
2
(k + 1)(3k + 4), q = 0. We want to show that there

exists no non-trivial form of degree 3k+1 vanishing along r lines in general position.

Working by contradiction let us assume that F is a non-trivial form of such degree

vanishing in Y = L1 + . . . + Lr, where Li is a line for all i = 1, . . . , r. We write Y

in the form of Y = Y ′ + C1 + . . . C2k + Y ′′, where Y ′ = L1 + . . . L2k+1 is a union of

2k+1 < r lines, Ci = L2(k+i)+L2(k+i)+1 is a pair of lines for i = 1, . . . , 2k and Y ′′ is a

union of remaining r−(2k+1)−2·(2k) = 1
2
(3k2+7k+4)−6k−1 = 1

2
(3k2−5k+2) > 0

lines. We specialize Y ′ to lie in the vertical ruling of some smooth quadric Q.

1To calculate this, look at the r for case d = 3k + 1, and substitute k − 1 in place of k.
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Additionally, we specialize the pairs Ci for all i = 1, . . . , 2k in the following way:

two lines from the same pair intersect with each other exactly at the point in quadric

Q. The remaining lines in Y ′′ are in general position. We have two consider two

cases, Q ⊂ F and Q ̸⊂ F.

1 Consider the case Q ̸⊂ F . Then by Bezout’s theorem 2.10 and Theorem 3.6 we

know that C = S−1(F |Q), where S denotes the Segre isomorphism, is a form of

bidegree (3k+1, 3k+1) in P1×P1 which vanishes along all preimages of traces

of L1, . . . , Lr. Since Y ′ ⊂ Q we may consider Y′ = S−1(Y ′). By 3.8, we know

that Y′ is a union of 2k+ 1 lines of bidegree (1, 0). Additionally let us denote

Y′′ = S−1(Y ′′|Q) and Pi = S−1(Ci|Q). Since Y ′′ consisted of 1
2
(3k2 − 5k + 2)

general lines, each intersecting Q at two points, Y′′ is a union of 3k2 − 5k + 2

points on P1 × P1. Each Ci intersects with Q at three points. Two standard

points with multiplicity one, and one additional point with multiplicity two

coming from the intersection of lines consisting Ci. Therefore every Pi is a

union of three points, one with multiplicity two and two with multiplicity one

in P1 × P1. Consider the residue curve obtained by factoring Y′ from C. We

may write deg(C − Y′) = (3k + 1, 3k + 1) − (2k + 1) · (1, 0) = (k, 3k + 1).

The residue curve contains Y′′,P1, . . . ,P2k, which are in total 3k2 − 5k + 2 −
2k + 2 + 2 · (2k) = 3k2 − k + 2 points with multiplicity one and 2k points

with multiplicity two. By Theorem 3.12 we know that such arrangements of

points imposes independent conditions on forms of such bidegree, meaning that

each points with multiplicity one imposes one condition and each point with

multiplicity two imposes 3 conditions. Thus, in total Y′′ +
∑2k

i=1 Pi imposes

3k2−k+2+2k ·3 = 3k2 +5k+2 independent conditions. Since the dimension

of all forms of bidegree (k, 3k + 1) is equal to (k + 1)(3k + 2) = 3k2 + 5k + 2,

the form C must be the zero form, which is a contradiction with Q ̸⊂ F .

2 Consider the case Q ⊂ F. Then, we can write F = Q+ F̃ , where F̃ is the form

of degree 3k − 1 vanishing in C1, . . . , C2k, Y
′′. To finish the proof, we must

specialize our arrangements even more. Let us denote R =
∑2k

i=1 L2(k+i) and

R =
∑2k

i=1 L2(k+i)+1. Notice that for each line pair Ci one of lines is contained

in R and the second one is contained in R′. We also define Y ′′′ = Y ′′ − Lr.

Now we specialize R and Lr to lie in a vertical ruling of some smooth quadric

Q′. We have to consider yet another two cases. Q′ ⊂ F̃ and Q′ ̸⊂ F̃ .

a) Consider the case Q′ ̸⊂ F̃ . Considering S as Segre isomorphism acting

on Q′, from the Bezout’s theorem 2.10 and Theorem 3.6 we know that

F = S−1( F̃
∣∣∣
Q′

) is a curve of bidegree (3k−1, 3k−1) in P1×P1 that contains

all of preimages of the traces of R,Lr, R
′, Y ′′′ in P1×P1. Since R+Lr are

2k + 1 lines contained in vertical ruling of Q′, we know that R = S−1(R)

and Lr = S−1(Lr) combined are 2k+1 lines of bidegree (1, 0) contained in

F. Therefore we can consider the residue curve F− (R + Lr) and we can

write deg(F−(R+Lr)) = (3k−1, 3k−1)−(2k+1) ·(1, 0) = (k−2, 3k−1).
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The residue curve must also contain the preimage R′ = S−1(R′|Q′) and

the preimage Y′′′ = S−1(Y ′′′|Q′). Since Y ′′′ is union of 1
2
(3k2 − 5k+ 2)− 1

general lines intersecting with Q at two distinct points each, we know

that Y′′′ are 3k2 − 5k points with multiplicity one in general position

in P1 × P1. Now, R is a union of 2k lines, each intersecting with Q at

two points, but for each line from R one point of intersection with Q

is a point of intersection with a paired line from R, which is already

contained by F. Thus R′ is a union of 2k points in P1 × P1. In total we

have 3k2 − 5k + 2k = 3k2 − 3k points contained by residue curve of a

bidegree (k − 2, 3k − 1). By 3.4 the dimension of all forms of bidegree

(k−2, 3k−1) is equal to (k−1)(3k) = 3k2−3k. Thus, a form of bidegree

(k−2, 3k−1) containing 3k2−3k general points must be zero form, which

is a contradiction with Q′ ̸⊂ F̃ .

b) Consider the case Q′ ⊂ F̃ . Then, we can write F̃ = Q′ +
˜̃
F , where

˜̃
F is a

form of degree 3k− 3 vanishing in Y ′′′ and R′. The Y ′′′ +R′ is a union of
1
2
(3k2− 5k) + 2k = 1

2
(3k2−k) = 1

2
(k+ 1)(3k− 1) lines in general position.

The form of degree 3k−3 vanishing along 1
2
(k+1)(3k−1) lines is a direct

contradiction with H3k−3 = Hd−4.

Case d = 3k + 2, k ∈ N⩾2. r = 1
2
(k + 1)(3k + 6), q = k + 1. The proof is very similar

to the case d = 3k, but we have to take into account additional points. We want to

show that there exists no non-trivial form of degree 3k + 2 vanishing along r lines

in general position and q collinear points. By contradiction, we assume that F is a

non-trivial form of degree 3k+ 2 vanishing along Y = L1 + . . .+Lr +P1 + . . .+Pq,

where L1, . . . , Lr are lines and P1, . . . , Pq are collinear points. We write Y in the

form of Y = Y ′+Y ′′+P where Y ′ = L1+. . .+L2k+2 is a union of 2k+2 < r lines, Y ′′

is the set of remaining s = r−(2k+2) = 1
2
(3k2+9k+6)−(2k+2) = 1

2
(3k2+5k+2)

lines and P = P1 + . . . + Pq is a union of q collinear points. We specialize Y ′ to

lie in the vertical ruling of a smooth quadric Q and P to be collinear points in the

same quadric Q, while Y ′′ remains general, intersecting Q at 2s distinct points. We

consider two cases, Q ⊂ F or Q ̸⊂ F .

1 Consider the case Q ̸⊂ F . By Bézout’s theorem 2.10 and by Theorem 3.6 we

know that C = S−1(F |Q) is a form of bidegree (3k + 2, 3k + 2) in P1 × P1.

Since Y ⊂ F , we know that S−1(Y |Q) ⊂ C. Denote Y′ = S−1(Y ′|Q), Y′′ =

S−1(Y ′′|Q) and P = S−1(P |Q). Then we can write Y′ ∪Y′′ ∪ P ⊂ C. Since

Y ′ is a union of 2k + 2 lines contained in the vertical ruling of the quadric Q,

by 3.8 we know that Y′ is also a union of 2k + 2 lines of bidegree (1, 0) each.

Factoring these lines out of C we obtain the residue curve R = C − Y′ and

deg(R) = (3k+2, 3k+2)−(2k+2)·(1, 0) = (k, 3k+2). Since Y ′′ intersects with

Q at 2s = 3k2 + 5k + 2 general points, therefore Y′′ is the set of 3k2 + 5k + 2

general points in P1×P1 and since P ⊂ Q, we know that P is the set of q = k+1

collinear points in P1×P1. We know that Y′′∪P ⊂ R, which means that R is
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the form of bidegree (k, 3k+2) vanishing in 3k2+5k+2 general points and k+1

collinear points. By Theorem 3.11, we know that k + 1 collinear points in P1

impose independent conditions on the forms of bidegree (k, 3k + 2), therefore

vanishing in Y′′∪P imposes 3k2+5k+2+k+1 = 3k2+6k+3 = (k+1)(3k+3)

independent conditions. The dimension of all forms of bidegree (k, 3k + 2) is

equal to (k + 1)(3k + 3) therefore the only form of such bidegree vanishing on

Y′′ ∪P is a zero polynomial, which is a contradiction.

2 Consider the case Q ⊂ F . Then, we can write F = Q + F̃ where F̃ is a form

of degree 3k + 2 − 2 = 3k vanishing along the lines contained in Y ′′. Notice

that the statement of Hd−2 is that there exists no non-trivial form of degree

d− 2 = 3k that vanishes along the 1
2
(k+ 1)(3k+ 2) lines. Since Y ′′ consists of

s = 1
2
(k + 1)(3k + 2), we get a contradiction that ends the proof.



Summary

In this thesis we provide a detailed proof of a result established in the 80’s by

Hartshorne and Hirschowitz to the effect that general lines in P3 (in fact in the pro-

jective space of any dimension) behave in the expected way with respect to imposing

conditions on linear forms of arbitrary degree.

This is in strong contrast to the situation when no reduced structures are allowed, see

[2] for the case of one fat line and [6] for some interesting cases with multiple fat lines.

Our approach is based on the well-established specialization and degeneration tech-

niques going back to Castelnuovo. These techniques require tools in algebraic geometry

and commutative algebra going far beyond the scope of regular classes at the bachelor

level.
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Streszczenie

W niniejszej pracy przedstawiamy szczegó lowy dowód wyniku ustalonego w latach 80-

tych przez Hartshorne’a i Hirschowitza, zgodnie z którym ogólne proste w P3 (a w istocie

— w przestrzeni rzutowej dowolnego wymiaru) zachowuja̧ siȩ zgodnie z oczekiwaniami,

jeśli chodzi o narzucanie warunków na formy jednorodne dowolnego stopnia.

Stanowi to wyraźny kontrast wobec sytuacji, gdy dopuszcza siȩ struktury niezre-

dukowane: zob. [2] dla przypadku jednej grubej prostej oraz [6] dla kilku interesuja̧cych

przypadków z wieloma grubymi prostymi.

Nasze podej́scie opiera siȩ na dobrze ugruntowanych technikach specjalizacji i de-

generacji siȩgaja̧cych czasów Castelnuovo. Techniki te wymagaja̧ narzȩdzi z geometrii

algebraicznej i algebry przemiennej, które znacznie wykraczaja̧ poza zakres typowych

zajȩć na poziomie licencjackim.
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