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Chapter 1

Introduction

The purpose of this work is to study the postulation of lines in the projective space
of dimension 3. This subject is not new, it has been considered in the 80s by Harshorne
and Hirschowitz in [9]. The authors proved there that general lines (when taken with
the reduced structure) always impose the expected number of conditions on forms of
arbitrary degree in P3. Our aim here is to present a more detailed proof of this claim and
to make the proof available to people with limited command of French.

Postulation problems in geometry have a long and rich history. They have led to
many developments in algebraic geometry and commutative algebra. Some problems,
even if their formulation can be easily understood, are still widely open.

The story begins with the postulation of points in the projective plane P2. Given a
finite number r of general points, it is expected that they impose the expected number
of conditions on forms of any degree d. But what is the ezpected number of conditions?

It is well known that the space H°(P?, O(d)) of forms of degree d on P? has (affine)
)

dimension ( . Vanishing of such a non-zero form in a point imposes one linear condition

on the coefficients of the form. If the number of points r satisfies

o d+2
2 Y

then we expect that the space of forms vanishing in these points has the dimension

(27

If the number of points is equal or exceeds the dimension of H°(P?, O(d)), then we expect
that there are no such forms apart of the zero form. These expectations are fulfilled by
definition for points in the plane.

However changing the setting just a little bit and allowing points with non-reduced
structure leads to serious complications. Let us illustrate it by a simple example.

Example 1.1. Let P, Q € P? be two distinct points. Vanishing to order 2 at any of them
imposes 3 conditions (all partial derivatives of order 1 at a point must vanish). Since
the space H(P?,0(2)) of forms of degree 2 has dimension 6, we expect that no form of
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degree 2 exists, which vanish simultaneously at P and () to order 2. However, the square

of the linear form vanishing simply at either point, has this property. So in this case
dim(H°(P*,0(2) @ Ip ® Jg) =6 — 5 = 1.

Hartshorne and Hirschowitz instead of increasing the multiplicity of considered points,
increased the dimension of the considered base locus and replaced points by general lines.
Vanishing along lines in P? is easy to detect, because a form vanishes along a line if
it is divisible by its equation. The problem becomes interesting in higher dimensional
projective spaces. In this work we consider P3.

The first crucial difference between points in P? and lines in P? is that the number
of conditions imposed by a line on forms of certain degree d depends on the degree (and
is equal d + 1). As a consequence, the number of conditions imposed by a line does not
always divide the number of forms of fixed degree. For example the space of forms of
degree 5 has affine dimension 56 and the number of conditions imposed by a single line
is 6. Since it is convenient to deal with subschemes imposing as many conditions as the
dimension of the space of forms, we need to introduce some points in addition.

Our approach is based on the well established specialization and degeneration method
exploiting the Castelnuovo Lemma. In order that this approach works we have to deal
with some unreduced subschemes.

It is worth to mention that apart of the paper by Hartshorne and Hirschowitz [9] (in
French) which exploits degenerations to a smooth quadric in P?, there is another work
by Aladpoosh and Catalisano [1], where the authors consider degenerations to the double
plane. A recent preprint by Dumnicki, Malara, Szemberg, Szpond, Tutaj-Gasiriska and
the first author [5] takes yet another turn and exploits degenerations to a plane.



Chapter 2

Background and Preliminaries

In this chapter we collect initial data which is used in the sequel and is not explained
in the standard courses in the mathematics study. We work over the field of complex
numbers C.

Let us begin with the ambient space, where our considerations take place, i.e., with

the complex projective space.

Definition 2.1. A complex projective space P? is defined as the set of equivalence classes
of the points in C* — {(0,...,0)} under the equivalence relation

(I‘g,...,l’g)’\' (/\I(),...,)\l‘g),/\ec—{(]}.

Definition 2.2. Let G be an additively written commutative monoid. By a G-graded
ring, we mean a ring R, that as an additive group can be expressed as a direct sum.

R=&D R

deG

The elements of Ry are called homogeneous elements of degree d.

Definition 2.3. An ideal I of a graded ring R is homogeneous, if I is generated by

homogeneous elements.

Definition 2.4. Let k[xo,...,x,] be a ring of homogeneous polynomials, and let I be a
proper ideal. Then, [ is prime if fg € I implies f € [ or g € I.

Definition 2.5. Let C|xy, ..., z,] be a ring of homogeneous polynomials. The projective
algebraic set defined by a homogeneous ideal I C Clzy, ..., z,] is:
V(I)={(ap:...:a,) €P": f(ag,...,a,) =0 for all f e I}.

The ideal of projective algebraic set V, is defined as:
IV)={f eClxg,...,z,): f(ag,...,a,) =0forall (ap:...:a,) €V}
Note that (V) is always a saturated ideal.
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Definition 2.6. For a commutative ring R with unity, the spectrum of R, denoted
Spec(R), is the set of all prime ideals of R.

On Spec(R), we define the Zariski topology. For any ideal I C R, a closed set V (I)
is given by:
V(1) = {p € Spec(R)|I C p}
Next, we define the structure sheaf Ogpec(ry on Spec(R).

Definition 2.7. For any open set U C Spec(R), Ogpec(r)(U) cosists of functions p : U —
U, Ry such that:

e s(p) € R, for every p e U.

e For every p € U, there exist an open neighborhood V' C U of p and elements
g,f € Rsuch that f ¢ q forall g €V, and s(q) =  in Ry for all g € V.

The pair (Spec(R), Ospec(r)) is called an affine scheme.

Definition 2.8. A scheme is a locally ringed space (X, Ox) in which every point has
an open neighborhood U such that the topological space U, together with the restricted
sheaf Ox|,;, is an affine scheme. We call X the underlying topological space of the scheme
(X,0x), and Ox its structure sheaf.

Theorem 2.9. A projective algebraic set V' is irreducible if and only if I(V') is a prime
1deal.

Now we recall one of the fundamental results in algebraic geometry which is Bézout’s
Theorem.

Theorem 2.10. If F and G are curves in P2, which are defined by homogeneous polyno-
mials, of degree di,dsy, respectively, and do not have any common components, then the
sum of the intersection multiplicities at all their intersection points is equal to dyds:
> I(P,FNG)=ddy.
PeFNG

where [(P, F'N G) denotes the intersection multiplicity of F' and G at the point P.

Example 2.11. Let F be curve of degree 3 and G a curve of degree 2 in P2, then the
total number of intersection points (counted with multiplicities) is 3-2 =6

A powerful generalization of Bézout’s Theorem concerns the intersection of algebraic
sets with hypersurfaces.

Let V' C P" be a projective algebraic set of dimension 0 and degree d; defined by
a homogeneous ideal I C Cl[xo,...,x,], and let H C P be a hypersurface defined by
a homogeneous polynomial of degree dy, such that H does not contain any irreducible
component of V. Then the intersection V N H is a subscheme of dimension § — 1, and its
degree satisfies:

deg(VNH)=deg(V)-deg(H) = d - ds.

This version of Bézout’s Theorem is an important computational tool in the intersection
theory.



2.1 Conditions in P" imposed by vanishing along lines

Theorem 2.12. A single line L imposes d+ 1 conditions on the forms of degree d in P3.

Proof. All lines in P? are projectively equivalent. Since number of imposed conditions
is invariant under linear change of coordinates, it suffices to prove the theorem for a
conveniently chosen line L.

Let L={(z:y:z:w)€P?: z=y=0} We first show the claim for small values
of d. Let us begin with forms of degree d = 1.

In order to parametrize L, we choose two distinct points P = (0:0:1:0), P' = (0:
0:0:1) on L. Then

VP L, (A p)—= AP +pP =(0:0:)\:p)

parametrizes L. Using this parametrization, we claim that L is contained in a form of
degree 1 defined by the equation Az + By+Cz+ Dw = 0 if and only if for all (A : u) € P!

A 0+B-0+C-A+D-pu=0.

This is equivalent to
ANC+puD =0

All coefficients of a zero polynomial are equal to zero, thus it must be

¢ =0

D = 0
The codimension of the subspace of all forms of degree 1 vanishing on L is equal to 2, this
follows from the above linear system of equations with rank 2 coefficient matrix (simply,
those equations are linearly independent). By the definition, this is equivalent to the fact,
that L imposes 2 conditions on forms of degree 1, which proves the statement for degree
1 and an arbitrary line.

The proof for the forms of degree d = 2 is done by the same strategy. The line L,

points P, P" and the parametrization remain unchanged. The only difference is that now
we consider a quadric ) defined by the equation

Ax® + By* + C2* + Dw? + Exy + Faz + Gow + Hyz + Tyw + Jzw = 0.
For a line L we have inclusion L C @ if and only if for all (A : u) € P!
A-0*+B-0°+C-N+D- > +E-0+F-0A+G-0-pp + H-0-AN4+1-0-pu+J-X-pu=0

which gives
NC + 1i*D + M\ =0

this implies

O:
D = 0.
J_



The rank of coefficient matrix of above system of linear equation is equal to 3, therefore
the codimension of the subspace of the forms of degree 2 vanishing on L in the space of
all forms of degree 2 is equal to 3, which is equivalent to the fact, that every line in P3
implies 3 conditions on forms of degree 2.

Now we consider the general case of forms of degree d. The line L, points P, P' and
line parametrization remain unchanged. Let F' be a form of degree d. Every such a form

is defined by equation:

F<x7yasz) = Z Cijklxiyjzkwl'
i+j+kti=d
Notice that the number of monomials of degree d in P? is equal to (SZd). The form F
vanishes along the line L if and only if for all (A : u) € P!

FO,0hp)= D cyu- 0072l =0,
i+j+k+l=d

)

d+1 such components. Therefore the system of linear equation is given by d+1 equations.

Notice that the only non-zero components are those where ¢ = 7 = 0. There are (

Every equation has the form
COOjk =0.
The coefficient matrix has clearly the maximal rank equal to d + 1, since every equation

refers to a different variable. This is equivalent to the fact, that the line L imposes d + 1
conditions on forms of degree d. O

The Theorem 2.12 can be easily generalized for projective spaces of any dimension.

Theorem 2.13. A single line L imposes d+ 1 conditions on the forms of degree d in P"
for anyn > 1.

Proof. The proof can be done using similar methods to the previous Theorem 2.12. We
start with stating the fact, that every line in P" is equivalent up to the projective change of
variables, which does not affect the number of implied conditions on any forms. Therefore
it suffices to prove the statement for a conveniently chosen line L.

Let L={(zo:x1:...:2,) €EP":xg =21 = ... = 12,9 = 0}. Inorder to parametrize
L we choose two distinct points P =(0:...:0:1:0), P =(0:...:0:0:1) on L.
Then
VP =L A= AP+pP =(0:...:0:\:pu)

parametrizes L. Consider general form of degree d given by an equation:

F(xo,...,l’n): Z clolnx’[t)omzln:()
10+...+in=d
L C F if and only if for all (\: u) € P!

F(O,...,0,\ pu) = Z Cigg - 00 L Qin=2 . Nin=1_in — )
0+...+Fin=d



Notice that, all nonzero components of above sum have igc = ... = 7,_o = 0. These
components therefore fulfill the equation i, 1 4+ i, = d. There are (1;”[) = d + 1 such

components. Every one of them gives an equation

C0..00p_1in — 0

Every equation is linearly independent, therefore the codimension of a subspace of all
forms of degree d vanishing on line L is equal to d + 1, which proves the Theorem. [

The result above leads to a question about points on a line. In particular, we can ask
whether a finite set of collinear points imposes independent conditions on homogeneous
forms of a given degree. The following lemma addresses this question in the case of P3.

Lemma 2.14. Let py,...,p, be collinear points in P3. If ¢ < k + 1, then these points

impose independent conditions on forms of degree k.

Proof. For any ¢ < k4 1, we can construct a hypersurface of degree k vanishing at any
chosen subset of k of the points, but not at the remaining one. Indeed, for each point
pi, we can choose a hyperplane containing only p; among the selected points. Taking the
union of such hyperplanes gives a hypersurface of degree k that vanishes at exactly k
chosen points. Therefore, the conditions imposed by the points are linearly independent.
If ¢ > k4 1, then every form od degree k that vanishes at k£ 4+ 1 collinear points, must
also vanish on the entire line, and hence at all ¢ points. In this case, the conditions are
dependent, and the number of independent ones is bounded above by k + 1. O






Chapter 3

The multiprojective space Pl x Pl
and its relation to quadrics in P°.

In this chapter we relate via the Segre map the product P! x P! and a smooth quadric
in P3.

3.1 Introductory remarks on multiprojective spaces

Definition 3.1. The Segre embedding of P x P™ is the map
S P x P —s P(n+1)(m+1)71
defined pointwise as follows:
S((xo:x1: o x), (Yo Y1 Ym)) = (ToYo : Toy1 : -+ & TnYm)-

In the most basic case, namely when n = m = 1 this gives an embedding of the
product of the projective line with itself into P3. The image of this embedding is a
smooth quadric surface, which clearly contains two one-parameter families of lines. Over
the complex numbers, any smooth quadric is ruled in two distinct ways by lines, so that
any smooth quadric in P? can be parametrized by the Segre map.

From now on let S : P* x P! — P3 denote the map given by

S((u:v),(s,t)) = (us: ut :vs: vt). (3.1)

Definition 3.2. Let F(x,y) be a polynomial in (zg,x1, ..., %) and (Yo, Y1, ..., Yn). We
say that F'(z,y) is bihomogeneous of bi-degree (a,b) if it is homogeneous of degree a in
the variables (xg, 1, ..., z,) and of degree b in the variables (vo, y1, ..., Yn)-

Example 3.3. The polynomial
F(s:t,u:v) = su®+vut — vt

is bihomogeneous of bi-degree (1,2). Note that the zero locus of a bihomogeneous poly-

nomial is a well-defined subset of the product of projective spaces.

11



12

Lemma 3.4. The dimension of the space of bihomogeneous polynomials of bidegree (a,b)

m+a) <n+b) )

i P™ x P is equal to ( K b

Proof. Let’s take a bihomogeneous polynomial of degree (a, b) in variables x = (zg, ..., Zm)
and y = (Yo, - .., Yn). The dimension of the space of bihomogeneous polynomials of bide-
gree (a, b) corresponds to the number of different monomials of this degree. The number
of different monomials of degree a in z = (xq,...,x,,) is given by (m:a) Similarly, the
number of different monomials of degree b in y = (y1,...,¥y,) is given by (";rb) Since
each z-monomial of degree a can be combined with each y-monomial of degree b, the

total number of bihomogeneous monomials of degree (a,b) is the product of :

("))

For m =1 and n = 1 the binomial coefficients simplify to:

(“é“) (1‘6”)) — (a+1)(b+1).

We define P x P! as the product of two projective lines. Therefore, we write:
Pl =A'"U{(0:1)}.

Every point in the first copy of P! corresponds to a vertical line in P! x P!, while every
point in the second copy gives rise to horizontal line. In particular, the point at infinity

(0 : 1) in the first factor correspond to the vertical line:
€ ={(0:1)} x P,

and the point at infinity (0 : 1) in the second factor gives the horizontal line:
Lo =P x {(0:1)}.

These two lines, £, and £, play the fundamental role in P! x P!: any curve on the surface
can be expressed as a linear combination of them.

In the multiprojective space P! x P!, we can formulate a version of Bézout’s theorem
analogous to the classical one in P2,

Theorem 3.5. Let C' and D be two curves in P! x P! without common components.
Suppose that C' has bidegree (ai,by1) and D has bidegree (as,bs). Then the number of
points in the intersection C'N D, counted with multiplicities, is given by

C- D= Z (C-D)p:a1b2+b1a2.

pPeCnND

Where, (C' - D)p denotes the local intersection multiplicity at the point P.



13

3.2 The Segre map and the isomorphism of P! x P! with smooth quadrics in
]P)3

Now we will show that P! x P! is isomorphic to a smooth quadric in P3. We endow
the first factor in the product P* x P! with coordinates (u : v) and the second factor with

(s:t).
Consider the following morphism (the Segre map):
S P x P '3 ((u:v),(s:t)) — (us:ut:vs:vt) € P>

Let (zg : o1 : x5 : 23) be coordinates on P2, In these coordinates the image of S satisfies
the following equation:
ToXg — L1 = 0, (32)

which defines a smooth quadric @ in P3.
In the other direction, let P = (pg : p1 : p2 : p3) be a point in @, i.e., pops = p1p2.

For p; # 0 we define the map Fy : (po : p1 : p2 : p3) — ((p1 : p3), (po : p1)). Using
(3.1), we obtain

S((pl ips)a (po ipl)) = (popl :pf - PoPs3 3p1p3)-
Since, pops = p1p2 we have the following equality:
(]90])1 3]0% - PoPs3 3]01]?3) = (popl 3]9% S P1p2 3])1]73)-

Dividing each coordinate by p;, we get

(popl ZP% - PoP3 iplps) = (po P12 1p3)7

which means that Fj inverses S on Uy = {(p1 : pa : p3:p4) : ;1 # 0} C Q.

For py # 0 we define the map Fy : (po : p1 : p2 = p3s) — ((po : p2), (p2 @ ps)). Similarly
to the previous case, we have

(pop2 : Pops : D5 : Papa) = (Popa : P1D2 : D5 - Dap3).

Dividing each coordinate by ps, we obtain

(P0p2 cP1p2 3]0; 3p2p3) = (po P11 P2 Ips),

which means that F; inverses S on Uy = {(p1 : p2 : p3 : p4) : p2 # 0} C Q.

The cases for nonzero p3 and py4, are analogous.

In the final step we need to show that the maps Fi, F5, F3 and F, agree on the
intersection of their domains, providing a global morphism inverting (). For example for

P=(py:p1:p2:ps) € Uy NU;

we have
Fi(P) = ((p1:p3), (po:p)) € P x P!
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and

Fy(P) = ((po : p2), (p2 : p3)) € P! x PL.

We claim that

((p1:p3)s (po : 1)) = ((po : p2), (P2 : p3))-
It suffices to check that
(Pl :p3) = (Po :p2) and (po ipl) = (P2 ip3)-

Since P € () it must be pops = p1p2 and the claim follows as

det Po D2 — det P2 P3 —0.
P1 D3 Po P1

As we saw above the projective surface P! x P! can be embedded in P? as xgx3— 2129 =
0. Restricting to the affine chart where xy # 0, this surface is given by the equation
3 = 1175 in A3, Over R, this surface is double ruled, meaning that it is covered by a

family of disjoin lines in two distinct ways.

Figure 3.1: Surface given by the equation x3 = 2,25 in R3. Source: [3]

The affine picture extends to the projective setting, namely the projective surface
P! x P! itself is double ruled in P3, as is contains two families of lines corresponding to

the sets of form {(a; : ag)} x P! and P! x {(by : by)}.
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Pl(s:t)

{(ay : as)} x P!

Pt x {(by : bo)}

~

PY(u : v)

3.3 Preimage under the Segre map of curves on a smooth quadric in P3

In the proof of the main Theorem 4.1, we will strongly use the isomorphism between
smooth quadric on P? and P! x P! given by Segre morphism. However, to complete our
proofs, we need to understand how we can view curves embedded in quadrics in P? as
curves in P x P

From now on, every curve or a point on P! x P! we denote using Fraktur letters e.g.
¢, £, p to differentiate them from the curves and points on P? denoted by the same letters
in the standard font.

Consider a smooth quadric Q C P? given by the equation zors — r125 = 0 and an
irreducible surface I C P3 given by the equation f = 0 for some homogeneous polynomial
f of degree d in variables g, x1, x2, x3. If Q ¢ F', then from Bézout’s Theorem 2.10 we
know that C'= F'N(Q (the intersection taken scheme theoretic) is a subscheme of degree
2d embedded in Q).

Theorem 3.6. Let Q, F be defined as above. Let S : P x P! — Q denote the Segre
isomorphism defined earlier. Then € = S™YF N Q) is a curve of bidegree (d,d) in
Pt x PL.

Proof. Consider the point ((uy : vg),(so : vo) € SH(F N Q). From the definition of

preimage we derive
Axg:xyxe:x3) € FNQ :S((up:vo), (S0:t0)) = (xo: 21 : T2 x3).

Notice that S((ug : vo), (S0 : to)) = (upso : uoto : VoSo : votp) and therefore S((ug : vg), (So :
ty)) € @ is satisfied regardless of wug, vg, So,to. It remains to show the condition under
which (ugsg : uoto : voso : votg) € F. Naturally, the point lies in a surface if and only if it
satisfies it’s equation. Thus we have

((ug : vo), (50 : 1)) € STHF N Q) < f(upso : uoto : voso : votg) = 0.
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Since f(zo : 1 : @9 : x3) was a polynomial of degree d it is easy to see that f(ugsg :
uolo : VoSo : Votp) is a bihomogeneous polynomial of bidegree (d, d) and it defines a curve
of such bidegree in P! x P! O

Notice that Theorem 3.6 does not give us the information on the Segre morphism
preimage of a line embedded in a quadric in IP?, since a single line (with reduced structure)
cannot be obtained as the intersection of some surface F' with the smooth quadric Q.
However, notice that if we take a point P € (), then the intersection of the plane H
tangent to () in point P with quadric () will be a curve of degree 2 degenerated to two
lines intersecting exactly in the point P. This construction will be useful in the proof of
the statement that the preimage of the Segre morphism of a line contained in @) is, in

fact, a line in P* x P!. But first we need to prove the following lemma.

Lemma 3.7. Let £ C P! x P! be a line, Q the smooth quadric defined earlier, and
S Pl x P! — Q the Segre isomorphism defined earlier. Then S(£) is a line in P?

contained in Q).

Proof. Since £ is a line in P! x P!, it is given by the zeros of a bihomogeneous polynomial
g of bidegree (1,0) or bidegree (0,1). Without loss of generality, we may assume that g
is of bidegree (1,0). Thus, we can write g((u : v), (s : t)) = au + bv for some a,b € C not
vanishing simultaneously. From this formula, we obtain the parametrization of £ given
by £={((b:—a),(s:t)) | (s:t) € P'}.

Hence

S(L)={(bs:bt:—as:—at)| (s:t) € P'}.

From this parametrization we can read of generators of the ideal of S(£):

{ axg + bxsy

ary + bxs
Thus, S(£) is a line in P? lying on a quadric Q. O
This gives us the tools required to prove the following important statement.

Theorem 3.8. Let L be a line in P3 contained in Q, which is a quadric defined earlier.
Let S denote the Segre isomorphism defined earlier. Then S™Y(L) is a line in P! x P!,

Proof. Let g = xgxr3 — x129 be the equation of Q).

We begin by choosing any point p € L. Since L C Q = P! x P!, the point p can be
expressed as the image p = S((ug : vo), (So : to)) = (upso : uglo : VoSo : voto) for some
((ug : vo), (80 : to)) € P! x PL.

Let H be a plane tangent to () at the point p. We know that H is given by the

equation f = 0, where f = Z?:o a—gpxi. By calculating the partial derivative, we obtain
T

f = votorg — voSor1 — UgtoTs + ugspoxs. The crucial observation mentioned earlier is that
HNQ = LUL where L’ is another line contained in () that intersects with L exactly at
p. Now consider the point p = ((u: v), (s : t)) € P! x P! such that p € S™H(HNQ). From
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the proof of Theorem 3.6, we know that p € ST'(H N Q) < f(S(p)) = 0. Substituting,

we obtain
0= f(S(p)) = votous — voSout — uptyvs + upsevt = (ugv — vos)(Sot — to$).

Therefore, S™H(H N Q) = £ U Lo, where £, £, are lines in P! x P! given by equations
ugv — vps = 0 and sgt — tgs = 0 respectively. We have

L CSTHNQ)=S(L) CSSHNQ)=HNQ=LUL"

By Lemma 3.7 we know that S(£;) is a line in P3 therefore it must be either L or L'
Without loss of generality, we may assume that S(£,) = L. From this it is easy to see
that S(£2) = L. From the fact that S is injective, we know that S™'(L) = £, therefore,
it ends the proof. O

By Lemma 3.7 and Theorems 3.6 and 3.8 we get a good understanding of how curves
contained in the quadrics in P? correspond to curves on P! x P'. We conclude this section
with somewhat obvious corollaries. As P! x P! there are two families of lines on a smooth
quadric on P?, they are called rulings. Lines of the same family do not intersect, and any
two lines of distinct rulings intersect at exactly one point in Q). If we take the inverse of
Segre embedding, the lines of the same ruling in P? lie on the same ruling in P! x P! and
the lines of distinct rulings in P? correspond to the lines of distinct rulings in P! x P!

3.4 Independent conditions imposed by points in P! x P!,

In order to prove the main Theorem 4.1, we need to understand conditions imposed
by points in P! x P! on forms of all bidegree. We address this problem in this section.
Since it is fully dedicated to P' x P!, we omit using Fraktur letters, and convey to the
standard notation.

Let us introduce some additional notation used throughout this section. Let X be
any set. By F((a,b),X) we denote the space of all forms of bidegree (a,b) vanishing
on X. In this notation F((a,b),D) is just the space of all forms of bidegree (a,b). For
any set X we view F((a,b), X) as a linear subspace of F((a,b), ) and we denote that by
F((a,b), X) < F((a,b),0).

Theorem 3.9. Let X be the set of k points in general position in P! x P, Then
codim F((a, b), X) = max{k,(a+1)(b+1)}.

We omit the proof of this theorem. It just states that k£ points in general position im-
pose k independent conditions on forms of bidegree (a,b). This is the expected behavior,
similar to that of general points in P".

Much less intuitive is what we state next. If we take k collinear points in Pt x P!,
then on the forms of sufficiently high bidegree they impose independent conditions. This
fact is commonly used throughout the proof of the main theorem. To tackle the proof of

this, we start with a lemma.
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Lemma 3.10. Let Z be the set of k + 1 collinear points lying in the vertical ruling of
P! x PL. Then for anyl € N, Z imposes independent conditions on the forms of bidegree
(I, k), that is, codim F((I, k), Z) = k + 1.

Proof. codimF((1,k), Z) = dim F((I, k)0) — dim F((I,k)Z). By 3.4, dim F((I, k)0) = (I +
1)(k + 1). The fact that the points of Z lie in a vertical ruling means that there exists
a vertical line, that is, a form of bidegree (1,0), passing through all the points of Z. If
the form of bidegree (I, k) vanishes on Z it must contain this line. Thus, we are left with
any form of bidegree (I — 1, k). Therefore, dim F((I,k)Z) = dim F((I — 1, k)0) = I(k + 1).
Thus, codim F((I, k), Z) = (I +1)(k+ 1) — I(k+ 1) = k + 1, which ends the proof. [

Now, if a set imposes independent conditions on the forms of some bidegree, we expect
it to impose independent conditions on all the forms of "higher” bidegree. We formalize
this statement in the following theorem.

Theorem 3.11. Let Z be the set of k + 1 collinear points lying in the vertical ruling of
P! x P'. Then for any l,u € N the set Z imposes independent conditions on forms of
bidegree (I, k + u), that is, codim F((l,k + u),Z) =k + 1.

Proof. Let W = Z + pgao + ... + Prrusr1 be the union of Z with u additional points on
the same vertical line that containing Z. Thus, W is the set of k + u collinear points
lying on a vertical line.

Directly from Lemma 3.10 we know that codim F((I,k + u), W) = k + u + 1. Now
notice that since Z C W we have

F(Lk+uw),W)<F((Lk+u),Z) <F((k+u),d)

that is, we can view F((I, k + u), W) not only as a linear subspace of F((I, k + u),?) but
also as a linear subspace of F((I, k 4+ u), Z). The last observation is that the codimension
of F((I, k+u), W) viewed as a subspace of F((I, k+u), Z) is at most u, since |W\ Z| = u,
and similarly codimension of F((I, k+u), Z) viewed as a subspace of all forms of bidegree
(a,b) is at most k+ 1, since Z consists of k+ 1 points. To acknowledge that it is sufficient
to state that codim F((I, k + u), Z) = k + 1, see Figure 3.2. O

codim<k+1
E——

F(LE +u), W) | 2225 1 51,k + ), Z) F((, k + ), 0)

codim=u+k+1

Figure 3.2: A diagram of codimension relations between spaces.

Lemma 3.10 and Theorem 3.11 can naturally be restated and proved for the points
in the horizontal ruling. We omit that.
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We end this section with the theorem on the independent conditions imposed by
configurations of points and double points on P! x P!, It is well known that on P? a
double point (point with multiplicity two) imposes 3 conditions. The same holds for
P! x P!, However, it is less obvious that if we take, e.g., four points with multiplicity one
and two double points, they induce the expected number, i.e., 4-1+42-3 = 10 conditions
on the forms of bidegree (1,4). To manage such situations, we introduce the following

theorem, which is a direct corollary of [12, Theorem 2.2].

Theorem 3.12. The configuration of 3k* — k + 2 general points with multiplicity one

and 2k general points with multiplicity two imposes independent conditions on a form of
bidegree (k,3k + 1).






Chapter 4

The main theorem

In this chapter we state our main result.

Theorem 4.1 (Main theorem). Let Y C P2 be a set of r lines Ly, ..., L, in general
position, Y = Ly + ...+ L,.. Then'Y imposes

i (s 0. (7))

independent conditions on forms of degree d, i.e., the space of forms of degree d vanishing
on'Y is either zero, or its codimension in the space of all forms of degree d is equal to
r(d+1).

An equivalent statement is that the linear transformation (the restriction map)
¢ : H'(P*, Ops(d)) — H°(Y, Oy (d))
derived from the structure sequence
0—=>Jy > 0ps -0y >0

twisted by d
0 — Jy(d) — Ops(d) = Oy(d) — 0

has always the maximal rank.

Example 4.2. For d = 3 the dimension of the space of forms of degree 3 in P? is equal
to (333) = 20. We expect for Y = L; that dimker¢ = 20 — (3 4+ 1)1 = 16 (so the
codimension is equal to 4). For Y = L; + Ly the expected dimker ¢ = 20 — (3+1)2 = 12
and so on. That means that for Y = Ly 4+ ... 4+ L5 the dimension dim ker ¢ equals 0, i.e.
the kernel is trivial, so the only form of degree 3 vanishing on 5 general lines is the zero
polynomial. The maximal rank statement can be understood by the fact that for r < 5
¢ is expected to be surjective, for » = 5 bijective and for all » > 5 injective.
. . . e
This example leads to the following generalization. If rq = drl is an integer, then

for Y = Ly + ... + L,, the map ¢ in Theorem 4.1 is expected to be bijective. Once

21
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proved, this claim implies the Main Theorem for any number r of lines. Indeed, the
restriction map must be injective (having the trivial kernel) for all » > r¢. For r < 1, let
Y=Li+...+L,andY,, =Y, + Lyyy1+...+ L,,. WehaveY, CY,, and

H'(Y;, Oy, (d)) = ®j_ H*(L;, Oy,(d)) C ®;2H"(Ly, Oy;(d)) = H’(Y,, Oy, (d)).
Hence there is a natural projection on a subspace
m: H(Y,,, Oy, (d)) = H(Y;, 0y, (d))

and ¢, = ¢,, o T is a surjection.
The number ¢ is an integer provided that d is sufficiently divisible. Additional diffi-

culties emerge when this condition is not satisfied.

Example 4.3. Consider d = 5. Let P> DY = L; +--- Ly be 9 lines in general position
and similarly P> D Y’' = L] + ... + L/, be 10 lines in general position.

By Lemma 3.4 the dimension of the space of forms of degree 5 in P? is equal to
(3;5) = 56. Every line imposes 6 conditions on forms of degree 5. Since Y consists of 9
lines, We expect it to impose 9 - 6 = 54 conditions, so the dimension of space of forms of
degree 5 vanishing on Y is expected to be 56 — 54 = 2 and we expect ¢ to be surjective.
For Y’ the number of expected imposed conditions is 60 > 56, which means that the
kernel of ¢ is trivial, but ¢ is not a bijection, it is only an injection.

The problem is that for d = 5 proving that for 9 general lines ¢ is surjective and for
10 general lines ¢ is injective is not sufficient to prove the Theorem. It can be understood
by the fact that although the surjectivity of ¢ for 9 general lines proves the fact that 9
general lines have good postulation, for 10 general lines ¢ can be injective even if the 10-
th general lines implies less independent conditions (e.g. only 3 independent conditions
instead of 6).

4.1 Reduction of the statement of Theorem 4.1.

Since a single line L imposes k + 1 conditions on forms of degree k in P3, an upper
bound for r general lines is given by codimker ¢ < r(k+1). Otherwise, this would imply
that some line imposes more than k£ + 1 conditions on forms of degree k.

34k
%. If such r exists, then ¢ for Y = L; + ...+ L,

is expected to be bijective as explained in Example 4.2. Since we have upper bounding

Let us assume that N 3 r =

for the codimension, we know that ¢ is injective, therefore proving that it is also a
surjection is enough to prove the theorem, because it proves the surjection for < r and

it guarantees trivial kernel (injection) for r' > r.

Corollary 4.4. Let k > 0, be any set integers. If there exists a natural number r such
3%k
)
k+1

r lines in the general position, i.e. Y = Ly + --- L, the only form of degree k vanishing

asr = , To prove Theorem 4.1 for set k it suffices to prove that for'Y consisting of

on'Y is a zero polynomaial.
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()
kE+1

1). If the remainder ¢ # 0, it means that there exists no r such as ¢ is bijection.

J and q as the remainder: ¢ = (3;;’“) —r(k+

More generally, we can define r = {

3+k
Proposition 4.5. Let k > 0, be any set integers. We define r,q as before: r = L—]i _’T_ 1J
and q = (37;]“) —r(k+1). LetY be the set of r lines in the general position and q collinear

points, i.e. Y = Ly +--- L, 4+ P +--- P,. It suffices to prove that ¢ for such'Y has trivial
kernel to prove Theorem 4.1 for the set k.

Proof. 1t is a generalization of Corollary 4.4, when ¢ # 0. To conclude this, we use Lemma
2.14 which states that ¢ < k + 1 collinear points on P3, impose ¢ independent conditions
on the form of degree k. Using the upper bounding of dimker(¢) and the mentioned
lemma, we can see that the trivial kernel of ¢ for such Y proves that it is bijective and
therefore proves that for every ' < r lines in general position, the codimension is expected
and since the ¢ points Py, --- , P, are collinear, if we add a new line in general position
but passing through P, --- , F,, the kernel must remain trivial. O

Remark 4.6. The triviality of the kernel mentioned in Proposition 4.5 means that the
dimension of the space of forms of degree d vanishing in r general lines and ¢ collinear
points is zero. Since the dimension function is upper semi-continuous, it suffices to prove

the statement for a particular configuration of lines and points.






Chapter 5

Proof of the Main Theorem

In order to alleviate notation, the statement of Theorem 4.1 for a fixed d > 0 will be
denoted by H,. Using Proposition 4.5, we will prove Theorem 4.1 for any d by induction.
First, we need to deal with the initial cases for d € {0,...,8}.

5.1 Initial cases

Case Hy,r =1, ¢ =0. We have to show that the non-trivial form of degree zero does
not vanish on a general line. For example, for a line L given by equations

x =0
y+z=0
such form of degree 0 does not exist which proves the statement.

Case H;, r = 2,q = 0. Two general lines in P? are skew, so they are not contained in
any plane.

Case Hy, r =3, ¢ = 1. We want to prove that there exists no quadric containing three
general lines and one general point. We start by showing that there exists exactly
one quadric containing three general lines.

We know that there exists at least one quadric containing three general lines because
three lines may impose at most 3 - (2 + 1) = 9 conditions on the quadric and the
dimension of all forms of degree 2 in P? is equal to (3;:2) = 10 > 9. By the
semicontinuity of dimensions of cohomology spaces, it suffices to construct three
lines such that the dimension of a space of quadrics containing those three lines is

equal to 1.

Consider the lines Ly, Lo, L3 given by equations
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respectively. It is easy to see that they can be parametrized in the the following

way:
Li={0:u:0:v)]|(u:v)€P}

Ly={(u:0:v:0) ]| (u:v) €P'}
Ly={(-u:u:—v:v)| (u:v) €P}

Now consider the quadric @) given by an equation

Az? + By + C22 + Dw? + Exy + Frz + Gow + Hyz + Iyw + Jzw = 0

Due to the fact that () contains L; the equation of () must be satisfied for every
point from L; in particular the points (0 : 1:0:0),(0:0:0:1),(0:1:0:1).
Substituting these points into the equation of () we obtain the following system of

linear equations

D=0
B=0
D+B+1=0

Similarly taking advantage of the fact that ) contains Ly and considering points
(1:0:0:0),(0:0:1:0),(1:0:1:0) € Ly, we obtain the system of equations

A=0
C=0
A+C+F =0

From those 6 equations combined we know that A= B =C =D =F =1 = 0.
Using that and considering points (—=1:1:0:0),(0:0: —=1:1),(=1:1:=1:1) €
L3 we obtain the following equations

E=0
J=0 .
E4+J+G+H=0

Intheend wehave A=B=C=D=F=F=]=J=0and G = —H which

gives us an equation of quadric () in a form of
t-xw—t-yz=0, teC.

This proves that the dimension of quadrics vanishing on three general lines in P? is
equal to 1.

Now, since there is only one quadric containing three general lines, we can ensure
that by taking a point outside of the quadric the dimension of quadrics vanishing
on three general lines and general point is equal to zero, meaning that the only such
form is the zero form.



27

Case H; r = 5,q = 0. We would like to prove that the only form of degree 3 vanishing
on five general lines L4, ..., L5 is the zero form. Working by contradiction, let us
assume that there exists a non-trivial form F' of degree 3 vanishing along the lines.

Consider the quadric ) determined by Li, Lo, L3. The lines L4, L5 intersect @)

transversally, thus each in two points (see Figure 5.1). There are two cases: Q C F'

or Q¢ F.
LiLyLs
/L4
Ls
Q

Figure 5.1: Arrangement of @ and Ly, ..., Ls.

1. Consider () ¢ F'. Therefore, from Theorem 2.10 we know that the intersection
FNQ is a curve of degree 6. Consider the Segre isomorphism S : P! x P! — Q
and its inverse S™'. By Theorem 3.6 we know that S™'(F N Q) is a curve €
of bidegree (3,3). Since Ly + ...+ Ls C F, therefore € contains the preimage
of restrictions of Lq,..., L5 to Q. As Ly, Ls, L3 are in the same ruling (wlog.
vertical ruling) in @ from 3.8 their preimage are three non-intersecting lines
£, 85,83 in P! x P! each of bidegree (1,0). The preimage of Ly, Ls that
intersects with () in two general points is simply four general points py, ..., P4
in P! x P!. Since ¢ vanishes on the lines £;, £, £3, factoring these lines out,
we obtain a form of bidegree (0, 3) (hence 3 lines in the horizontal ruling) that

must contain four general points pq,...,ps , which is a contradiction.

2. Consider  C F. Therefore, we can write F' = @) + F where F is a form
of degree 3 — 2 = 1. Since Ly, L5 are not contained in @), it is required that
Ls+ Ls C F which contradicts H;.

Case Hy, r =17, ¢ = 0. The goal is to show that for seven general lines, the only form of
degree 4 vanishing on all seven lines is the zero polynomial. We will utilize similar
techniques to the case Hz with small twists. Let denote the lines Ly, ..., Ly and let
Ly, L, L be lines in the vertical ruling of a smooth quadric Q).

We specialize Ly and Ls to intersect at a point and moreover we assume that this
point lies on ). We do the same for the pair Lg and L;. Of course we assume that

the intersection points of each pair are different (see Figure 5.2).

Let us now assume by contradiction that there exists a non-trivial form of degree 4
denoted by F' vanishing along all lines Ly, ..., Ly;. Then again there are two cases:

QCForQ¢F.
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Q

Figure 5.2: Arrangement of Q) and L4, ..., L;.

1 Consider first the case () ¢ F. Then the restriction F|, is a curve of degree

2.4 = 8. Again considering the Segre isomorphism S : P! x P! — Q and
it’s inversion S we know that € = S~'(F|,) is a bihomogeneous curve of
bidegree (4, 4) vanishing on all traces of Ly, ..., Ly on P! x P!. Since Ly, Lo, L3
are contained in () their image in P! x P! are three lines £, £, £5 in the vertical
ruling (they are not intersecting). Therefore bideg(€ — (£ + £2 + £3)) =
(4,4) —3-(1,0) = (1,4).

Now the traces of Ly, L5, Lg, L7 are two double points (points with multiplicity
two coming from intersections of Ly, Ls and Lg, L7 respectively) and four points
with multiplicity one. Suppose there exist a bihomogeneous polynomial g of
bidegree (1,4) vanishing at all those points. Consider now a line of bidegree
(0,1) (a horizontal line) passing through one of the points with multiplicity 2.
We know that ¢ has multiplicity two at this point, thus ¢ has to contain the
whole line because otherwise it would contradict Bézout’s Theorem for P! x P!
3.5, since curves of bidegree (1,4) and (0, 1) intersect either at exactly 1 point
counted with the multiplicity or the second curve is a component of the first
curve. The same argument can be applied to prove that the polynomial g van-
ishes aling line of bidegree (0, 1) containing the second point with multiplicity

two.

Reducing ¢ by those 2 lines we are left with a polynomial of bidegree (1,4) —
(0,1) — (0,1) = (1,2) containing 6 general points with multiplicity one. By
Lemma 3.4 we know that the dimension of a space of polynomials of bidegree
(1,2) is equal to (1 +1)- (24 1) = 6 so the only polynomial of such degree
containing 6 general points is the zero polynomial, which is a contradiction.

: InthecaseQCFwehaveF:Q—l—ﬁ, Whereﬁisaformofdegree4—2:2

in P3. Since Ly, Ls, Lg, L7 are not contained by () they must lie in F.If
Ly, ..., Ly were lines in general position we could say that it is a contradiction
with Hs but remember we actually specialized Ly, Ls to intersect and Lg, L7
to intersect as well. So the argument does not apply directly.

If the quadric F contains all those lines, we can again use the Segre isomor-
phism to see how traces of those lines look in P! x P!. We denote images of
Ly,...,L; by £4,..., L7 respectively. Since L4 and Ls intersected thus their
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images also do, which means £4, £5 are lines from different ruling on P! x P!
Without loss of generality we can write that £, is of bidegree (1,0) and £5 is
of bidegree (0, 1). Exactly same logic allows us to write that £4 is of bidegree
(1,0) and £7 is of bidegree (0,1). Since every two lines from different rulings
intersect in P! x P!, this implies that £, and £; intersects and £5 intersects
with £¢. In the consequence Ly and L7 have to intersect and L5 and L; have

to intersect which is not true in general, therefore it is a contradiction.

Case H; r = 9, ¢ = 2. We want to show that there exists no form of degree 5 that
contains nine general lines and two points. Working by contradiction, let us assume
that there exists a non-trivial form F' of degree 5 vanishing along the lines Ly, ..., Lg
and points P;, P,. We specialize L1, ..., L4 to lie in the vertical ruling of the smooth
quadric () and we specialize the points P;, P, to be contained in the same quadric
(). Lastly, the lines Ls, ..., Ly are general, so they intersect () transversally, each
at two points (see Figure 5.3). There are two cases to consider. Either Q C F' or

Q¢ F.

L L Lg

Q Ls
Figure 5.3: Arrangement of @), Ly, ..., Ly and Py, P,.

1 Consider the case Q ¢ F. Since Ls,... Ly intersected () transversally, the
traces of Ls,... Ly are ten general points on P! x P!, Adding two general
points S71(P;), S71(P) we get twelve general points in P! x P!. Since by
Lemma 3.4 we know that the dimension of the forms of the bidegree (1,5) is
2 %6 = 12, we know that the only form of the bidegree (1,5) that vanishes in
those twelve points is the zero form; hence, we get a contradiction.

2 Consider the case (Q C F. Then we can write F' = @ + ﬁ, where F is a form
of degree 5 — 2 = 3 in P3. Since Ls, ..., Lg are not contained in ), they must
be contained in F'. The form of degree 3 vanishing along five general lines is

in contradiction with Hj, which ends the proof.

Case Hg r =12, ¢ = 0. We want to prove that there exists no form of degree 6 vanishing
along twelve general lines. By contradiction, let us assume that there is a form F
of degree 6 containing the lines Lq,..., Lis. We specialize Lq,... L5 to lie on the
vertical ruling of a smooth quadric (), and the lines Lg, ... L1s are general, which
means that they intersect () transversally, each at two distinct points (see Figure
5.4). There are two cases to consider, either Q C F or Q ¢ F.
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Lo L L12

Q L

Figure 5.4: Arrangement of ), and Ly, ..., Lqs.

1 Consider the case Q ¢ F. Then, from Bézout’s Theorem 2.10 and 3.6 we

know that € = S~'(F|,), where S denotes the Segre isomorphism, is a curve
of bidegree (6,6) on P! x P'. If we denote £; = S™!(L;) for i = 1...,5, since
Ly,...,Ls C Q, weknow that £,..., £5 C €. Note that from 3.8 £; is a line of
bidegree (1,0) for i = 1,...,5. Therefore we can write deg(€—(£,+...+£5) =
(6,6) —5-(1,0) = (1,6). This means that the residue curve of bidegree (1,6)
must contain all traces of Lg, ..., Lis in P; x P;. The preimage of Lg, ..., Lo
is 14 general points (originating from the intersections of Lg, . .., L1 with Q).
By Lemma 3.4 the dimension of all forms of bidegree (1, 6) is equal to 2-7 = 14,
therefore there exists no non-trivial form of such bidegree containing 14 general
points which results in a contradiction.

Consider the case @@ C F. Then, we may write F' = Q) + F for F being a form
of degree 6 — 2 = 4. Since Lg,...,L1s ¢ @Q, we know that L{,..., L5 C F.
This is a direct contradiction with Hy, which ends the proof.

Case H; r =15, ¢ = 0.. We want to show that there exists no form of degree 7 vanishing

along 15 general lines. Working by contradiction, let us assume that there is a form
F'is of degree 7 vanishing along general lines Ly, ... Lj5. We begin by specializing
lines Lq,...,Ls to the vertical ruling of a smooth quadric (). Additionally, we
specialize lines Lg and L; to intersect exactly at a point on (). We do the same
with three next pairs of lines: Lg with Lg, Lo with Li; and Ly with L;3. That
way, we end up with five lines fully contained by @, four pairs of lines intersecting
at a point in ) and two general lines. We have to consider two cases, either ) C F

or Q¢ F.

1 Consider first Q ¢ F. Considering the Segre isomorphism S : P! x P!, by

2.10, we know that the F|Q is a curve of degree 14 and by 3.6 we know that
¢ = S7!(F|y) is a curve of bidegree (7,7) in P' x P'. Let us denote £; =
S=YL;) for i = 1,...,5. By 3.8, we know that for ¢ = 1,...,5 the preimage
£; is a line of bidegree (1,0). Since L ..., L5 C F, we know that € vanishes
along all preimages of traces of L;. Consider the residue curve obtained by
factoring £1, ..., £5 out of €. Since we know that deg(€ — (£, + ...+ £5)) =
(7,7) —5-(1,0) = (2,7), the residue curve is of bidegree (2,7) and contains
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preimages of all traces of Lg, ..., L15. Consider lines Lg, ..., L13. Those lines
consists of four pairs of lines intersecting exactly at a point in ). Additionally,
each of those 8 lines intersects () in one more point. Therefore we have 4
points with multiplicity two and 8 points with multiplicity one. Taking into
account the two last general lines Lq4, L15; which intersect at 4 more points
with () we have 4 points with multiplicity two and 8 + 4 = 12 points with
multiplicity one. All those points have to be contained by a form of bidegree
(2,7). By 3.12 we know that such arrangement of points with multiplicity two
and one imposes independent conditions in P* x P!, which means that every
double point imposes three conditions on forms of any bidegree, and points
general points with multiplicity one impose one condition each. In total, we
have 3 -4+ 12 = 24 conditions. Due to the fact, that the dimension of a space
of forms of bidegree (2,7) by 3.4 is equal to 3-8 = 24, we get a contradiction.

2 Consider () C F. This case is especially interesting, because proving contra-
diction is not as straightforward as it was in earlier examples. We can write
F= Q+ﬁ , where F is a form of degree 7—2 = 5 containing four pairs of inter-
secting lines Lg, . .., L13 and two general lines L4, L15. Now let us additionally
specialize those lines. We choose lines Lg, Lg, L1, L12, L14 to lie on a vertical
ruling of some smooth quadric )’. Notice that, we now have specialized one
line from each intersecting pair of lines and one of the remaining general lines.
Consider the Segre isomorphism S acting on '. We have two consider now
two cases. Either Q' € For Q ¢ F.

a) Consider the case Q ¢ F. From the Bezout’s theorem 2.10 and Theorem
3.6, we know that & = S—(F Q/) is a curve of bidegree (5,5). Since

Le, Lg, L1g, L12, L1, C Q' by Theorem 3.8 we know that £; = S7!(L;),i =
6,8,10,12, 14 are lines of bidegree (1,0). Consider the residue curve ob-
tained by factoring £g, £g, £10, £12, £14 out from the €. We may write
deg(6 — 31 _g L) = (5,5) — 5+ (1,0) = (0,5). This curve of bidegree
(0,5) have two contain all the preimages of traces of Ly, Lg, L11, L13, L5
on Q. The Lq5 is a general line therefore it intersects with @’ at two
distinct points. Lines L7, Lg, L11, L13 also intersects with @’ in two points,
however one of this points is already contained by (Q’, because it comes
from the intersection with paired line Lg, Lg, L1g, L12 respectfully. In the
end we have 2 +4 -1 = 6 general points contained by a curve of bidegree
(0,5). Since the dimension of a space of forms of bidegree (0,5) is equal

to 6, such form does not exist and it is a contradiction.
b) Consider the case Q' C F. Then, we can write F' = Q' + F, where F is

a form of degree 3 containing Ly, Lg, L1y, L3, L15. It is a form of degree 3

containing 5 general lines, which is a direct contradiction with Hj.

The case of H; is clearly different and more complex than previously considered

cases. For Hy the complexity was hidden under small number of lines, which allowed
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us to use some other tricks. However, in the generalized proof the cases where
d = 3k + 1 remain as complex as H7;. To handle them, we will always rely on the
techniques presented in this proof.

Case Hg r =18, ¢ = 3. We want to show that there exists no form of degree 8 vanishing
in 18 general lines and 3 collinear points. Working by contradiction, let us assume
that the form F' vanishes on the lines L1, ..., L1g and the collinear points P, P, Ps.
We specialize lines Lq,..., Lg to lie in a vertical ruling of a smooth quadric Q.
Additionally, we specialize the points P;, P>, P; not only to be collinear but also to
be contained in the same quadric (). We have to consider two cases, either () C F

or Q¢ F.

1 Consider Q ¢ F. Considering the Segre isomorphism S : P! x P!, by 2.10, we
know that F|, is a curve of degree 16 and by 3.6, we know that € = S~'(F|,)
is a curve of bidegree (8,8) on P! x P!. Consider £; = S~(L;) fori =1,...,6.
By 3.8, we know that £; is a line on the vertical ruling i.e. a curve of bidegree
(1,0). Consider the residue curve obtained by factoring £4, ..., £s out of €.
Since we know that deg(€ — (£, + ...+ £6)) = (8,8) —6-(1,0) = (2,8),
the residue curve is of bidegree (2,8) and contains preimages of all traces of
Lo, ..., Lig and traces of Py, P, Py left on P! x P'. Since each line L7, ..., L
intersected with @ at two distinct points, the S™'((L; U ... U Lig) N Q) are
24 general points in P! x PL. Since Py, P, P; where chosen to lie in () their
preimages are simply 3 collinear points on P* x P!. The residue curve vanishes
on 24 general points and 3 collinear points. By Theorem 3.11 we know that 3
collinear points on P! x P! impose independent conditions on forms of bidegree
(2,8). Thus, in total, we have 27 independent conditions imposed on a residue
curve of bidegree (2.8). Since the dimension of all forms of bidegree (2,8)
is 27, the only form of such a bidegree satisfying all conditions is the zero
polynomial, and hence it is a contradiction.

2 Consider () C F. Then, we can write F' = ) + ]5, where F is a form of degree
8 — 2 = 6 vanishing along L, ..., Lig. Since Ly, ..., Lig are general lines, it is

a contradiction with Hg.

5.2 Proof by induction for all d > 9

The eight initial cases of Hy should be enough to grasp a concept of how the general
proof is going to work. We simply consider three distinct cases, based on the reminder
of d modulo 3. For each case, we construct a slightly different arrangement of lines,
proving the theorem. Since the initial cases are already proven, we perform the proof by

induction.

Case d =3k, k € Noy. 7= 2(k+1)(3k+2), ¢ = 0. First, we briefly explain how r was
calculated. In the later cases of proofs, we omit this part. The dimension of all
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forms of degree 3k in P? is equal to (3]“;3) = 2(k+1)(3k +2)(3k + 1). Any single

line imposes 3k + 1 independent conditions on forms of degree 3k, therefore, we

1
Q(kﬂ)(g:ﬁ)(gkﬂ) = 2(k+1)(3k + 2). Tt is easy to observe that r is an

integer for all k. We want to prove that there exists no non-trivial form of degree 3k

consider r =

that contains r general lines. Working by contradiction, we assume that a nonzero
form F' of degree 3k vanishes along Y, where Y = L; 4+ ...+ L, is the union of r
lines. We specialize Y to be of the form Y =Y’ +Y"” where Y’ = L; + Lo is the
set of 2k + 1 lines that lie in the vertical ruling of a smooth quadric ). Note that
2k 4+ 1 < r, so the construction is always possible. Y is the set of the remaining s
lines, i.e. s =7r—(2k+1) = 2(3k* + 5k +2) — (2k+1) = 2 (3k* + k) = 1k(3k + 1).
Each line of Y” intersects with @ at two distinct points transversally.

We now consider two cases, Q C F or Q ¢ F.

1 Consider the case Q ¢ F. By Bézout’s theorem 2.10 we know that F\Q is
a curve on ) of degree 2 - 3k = 6k. By 3.6, we know that € = S™'(F|,) is
a form of bidegree (3k,3k) on P! x P! where S : P! x P! — @ is the Segre
isomorphism. Let us denote 9’ = S~'(Y’|,) and 9" = S~'(Y"|,). We can
write Y C F = S7'(Y],) C € & Q' UY" C ¢ Since Y’ is the union of
2k + 1 lines in the vertical ruling on @), we know that 2)’ is the union of 2k + 1
lines in the vertical ruling on P! x P!. Consider the residue curve R = € — 2.
We know that deg(R) = (3k,3k) — (2k + 1) - (1,0) = (k — 1,3k). Note that
since each line of the s lines of Y intersected with @) at two points, )" is a
union of the 2 s = 2 2k(3k 4+ 1) = k(3k + 1) points. We know that 9" C R.
Thus, we have a form of bidegree (k — 1,3k) vanishing in k(3% + 1) points.
Since the dimension of all forms of bidegree (k — 1,3k) is equal to k(3k + 1),
the only form of such a bidegree vanishing in k(3% + 1) general points is zero

polynomial and that is a contradiction.

2 Consider the case Q C F. Then we may write F' = @) + ﬁ, where F is the
form of degree 3k — 2 vanishing along Y. Notice that H,; , states that there
exists no non-trivial form of degree 3k — 2 that vanishes along k(3k + 1)
general lines'. Since Y” consists exactly of the %k(3k +1) general lines, we get
a contradiction with H; s, ending the proof.

Case d =3k +1, k € Noy. 7 = L(k+1)(3k + 4), ¢ = 0. We want to show that there
exists no non-trivial form of degree 3k+ 1 vanishing along r lines in general position.
Working by contradiction let us assume that F' is a non-trivial form of such degree
vanishing in Y = Ly + ... 4+ L,, where L; is a line for all « = 1,...,r. We write Y
in the foom of Y =Y’ 4+ C1 +...Co +Y”, where Y/ = L1 + ... Lo is a union of
2k+1 < rlines, C; = Logti)+ Logktiy+1 is a pair of lines fori = 1,..., 2k and Y" is a
union of remaining r—(2k+1)—2-(2k) = 3 (3k*+7k+4)—6k—1 = 3(3k*—5k+2) > 0
lines. We specialize Y’ to lie in the vertical ruling of some smooth quadric Q.

'To calculate this, look at the 7 for case d = 3k + 1, and substitute k — 1 in place of k.
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Additionally, we specialize the pairs C; for all « = 1,...,2k in the following way:
two lines from the same pair intersect with each other exactly at the point in quadric
@. The remaining lines in Y” are in general position. We have two consider two
cases, Q C Fand Q ¢ F.

1 Consider the case Q ¢ F'. Then by Bezout’s theorem 2.10 and Theorem 3.6 we
know that € = S~'(F,), where S denotes the Segre isomorphism, is a form of
bidegree (3k+1,3k+1) in P! x P! which vanishes along all preimages of traces
of Ly,...,L,. Since Y’ C Q we may consider 2)' = S~}(Y”). By 3.8, we know
that %)’ is a union of 2k + 1 lines of bidegree (1,0). Additionally let us denote
" = S (Y"|,) and B; = S7'(Cil,). Since Y consisted of 3(3k* — 5k + 2)
general lines, each intersecting Q at two points, )" is a union of 3k? — 5k + 2
points on P! x P!. Each C; intersects with @) at three points. Two standard
points with multiplicity one, and one additional point with multiplicity two
coming from the intersection of lines consisting C;. Therefore every ; is a
union of three points, one with multiplicity two and two with multiplicity one
in P! x P!. Consider the residue curve obtained by factoring %)’ from €. We
may write deg(€ — ') = 3k+ 1,3k +1) — (2k+1) - (1,0) = (k,3k + 1).
The residue curve contains 2)”,B1, ..., Vax, which are in total 3k* — 5k + 2 —
2k + 2+ 2 (2k) = 3k? — k + 2 points with multiplicity one and 2k points
with multiplicity two. By Theorem 3.12 we know that such arrangements of
points imposes independent conditions on forms of such bidegree, meaning that
each points with multiplicity one imposes one condition and each point with
multiplicity two imposes 3 conditions. Thus, in total 2)” + Z?il B; imposes
3k? —k+2+2k-3 = 3k*+ 5k +2 independent conditions. Since the dimension
of all forms of bidegree (k,3k + 1) is equal to (k + 1)(3k + 2) = 3k* + 5k + 2,

the form € must be the zero form, which is a contradiction with @ ¢ F'.

2 Consider the case () C F. Then, we can write F' = () + f, where F is the form
of degree 3k — 1 vanishing in C,...,Cy,Y"”. To finish the proof, we must
specialize our arrangements even more. Let us denote R = Zfil Lo(x+4) and
R = Zfil Lo(4i)+1- Notice that for each line pair C; one of lines is contained
in R and the second one is contained in R’. We also define Y =YY" — L,.
Now we specialize R and L, to lie in a vertical ruling of some smooth quadric
Q'. We have to consider yet another two cases. Q' C F and Q ¢ F.

a) Consider the case ) ¢ F. Considering S as Segre isomorphism acting
on ', from the Bezout’s theorem 2.10 and Theorem 3.6 we know that
S = S‘l(ﬁ‘ ) is a curve of bidegree (3k—1,3k—1) in P! x P! that contains
all of preimanes of the traces of R, L, R, Y" in P! x P!. Since R+ L, are
2k + 1 lines contained in vertical ruling of @', we know that R = S~!(R)
and £, = S7(L,) combined are 2k+1 lines of bidegree (1, 0) contained in
§. Therefore we can consider the residue curve § — (R + £,) and we can
write deg(F—(R+L,)) = Bk—1,3k—1)—(2k+1)-(1,0) = (k—2,3k—1).
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The residue curve must also contain the preimage R’ = S~'(R'|,) and
the preimage 9)” = S~'(Y"|,). Since Y is union of T(3k* =5k +2)—1
general lines intersecting with () at two distinct points each, we know
that 9" are 3k* — 5k points with multiplicity one in general position
in P! x P!. Now, R is a union of 2k lines, each intersecting with @ at
two points, but for each line from R one point of intersection with
is a point of intersection with a paired line from R, which is already
contained by §. Thus 2R’ is a union of 2k points in P* x P!. In total we
have 3k? — 5k + 2k = 3k* — 3k points contained by residue curve of a
bidegree (k — 2,3k — 1). By 3.4 the dimension of all forms of bidegree
(k—2,3k—1) is equal to (k—1)(3k) = 3k? — 3k. Thus, a form of bidegree
(k—2,3k—1) containing 3k? — 3k general points must be zero form, which
is a contradiction with Q' ¢ F.

b) Consider the case Q' C F. Then, we can write F= Q + ﬁ, where F is a
form of degree 3k — 3 vanishing in Y and R’. The Y"” + R’ is a union of
1(3k* —5k) + 2k = 1(3k* — k) = 1(k+1)(3k — 1) lines in general position.
The form of degree 3k — 3 vanishing along $(k+1)(3k —1) lines is a direct
contradiction with Hs,_3 = Hy_4.

Case d =3k +2, k € Noy. 7 = 2(k+1)(3k +6), ¢ = k + 1. The proof is very similar
to the case d = 3k, but we have to take into account additional points. We want to
show that there exists no non-trivial form of degree 3k + 2 vanishing along r lines
in general position and ¢ collinear points. By contradiction, we assume that F'is a
non-trivial form of degree 3k + 2 vanishing along Y = Ly +... + L, + P +...+ P,
where Li,..., L, are lines and P, ..., P, are collinear points. We write Y in the
formof Y = Y'+Y"+ P where Y’ = L1+...+ Loy, 2 is a union of 2k+2 < r lines, Y
is the set of remaining s = r— (2k+2) = 1(3k* 4+ 9k +6) — (2k+2) = $(3k*+5k +2)
lines and P = P, + ...+ P, is a union of ¢ collinear points. We specialize Y’ to
lie in the vertical ruling of a smooth quadric () and P to be collinear points in the
same quadric ), while Y” remains general, intersecting () at 2s distinct points. We
consider two cases, Q C Flor Q ¢ F.

1 Consider the case Q ¢ F. By Bézout’s theorem 2.10 and by Theorem 3.6 we
know that € = S™'(F|,) is a form of bidegree (3k + 2,3k + 2) in P! x PL.
Since Y C F, we know that S~'(Y|,) C €. Denote Q' = S™1(Y|,), 9" =
S7HY"|,) and P = STH(P|,). Then we can write P’ UY” UP C €. Since
Y’ is a union of 2k + 2 lines contained in the vertical ruling of the quadric @,
by 3.8 we know that )’ is also a union of 2k + 2 lines of bidegree (1,0) each.
Factoring these lines out of € we obtain the residue curve R = € — Q)" and
deg(R) = (3k+2,3k+2)—(2k+2)-(1,0) = (k,3k+2). Since Y intersects with
Q at 2s = 3k? + 5k + 2 general points, therefore 9)” is the set of 3k% + 5k + 2
general points in P! x P! and since P C ), we know that 93 is the set of ¢ = k+1
collinear points in P! x P!. We know that 2)” U3 C R, which means that R is
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the form of bidegree (k, 3k+2) vanishing in 3k%+5k+2 general points and k+1
collinear points. By Theorem 3.11, we know that k + 1 collinear points in P!
impose independent conditions on the forms of bidegree (k, 3k + 2), therefore
vanishing in )" U imposes 3k*+5k+2+k+1 = 3k?+6k+3 = (k+1)(3k+3)
independent conditions. The dimension of all forms of bidegree (k, 3k + 2) is
equal to (k + 1)(3k + 3) therefore the only form of such bidegree vanishing on
)" UP is a zero polynomial, which is a contradiction.

Consider the case ) C F'. Then, we can write F' = ) + F where F is a form
of degree 3k + 2 — 2 = 3k vanishing along the lines contained in Y”. Notice
that the statement of H; 5 is that there exists no non-trivial form of degree
d — 2 = 3k that vanishes along the (k4 1)(3k + 2) lines. Since Y” consists of
s = 2(k+1)(3k + 2), we get a contradiction that ends the proof.



Summary

In this thesis we provide a detailed proof of a result established in the 80’s by
Hartshorne and Hirschowitz to the effect that general lines in P? (in fact in the pro-
jective space of any dimension) behave in the expected way with respect to imposing
conditions on linear forms of arbitrary degree.

This is in strong contrast to the situation when no reduced structures are allowed, see
2] for the case of one fat line and [6] for some interesting cases with multiple fat lines.

Our approach is based on the well-established specialization and degeneration tech-
niques going back to Castelnuovo. These techniques require tools in algebraic geometry
and commutative algebra going far beyond the scope of regular classes at the bachelor

level.
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Streszczenie

W niniejszej pracy przedstawiamy szczegdtowy dowdd wyniku ustalonego w latach 80-
tych przez Hartshorne’a i Hirschowitza, zgodnie z ktérym ogdlne proste w P? (a w istocie
— w przestrzeni rzutowej dowolnego wymiaru) zachowuja sie zgodnie z oczekiwaniami,
jesli chodzi o narzucanie warunkéw na formy jednorodne dowolnego stopnia.

Stanowi to wyrazny kontrast wobec sytuacji, gdy dopuszcza si¢ struktury niezre-
dukowane: zob. [2] dla przypadku jednej grubej prostej oraz [6] dla kilku interesujacych
przypadkéw z wieloma grubymi prostymi.

Nasze podejscie opiera si¢ na dobrze ugruntowanych technikach specjalizacji i de-
generacji siegajacych czaséw Castelnuovo. Techniki te wymagaja narzedzi z geometrii
algebraicznej i algebry przemiennej, ktore znacznie wykraczaja poza zakres typowych

zaje¢ na poziomie licencjackim.
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